five

Replication Data for: How social capital matters for receiving social support: On the complementary role of civil society in the Covid-19 pandemic|社会资本数据集|新冠疫情数据集

收藏
DataONE2023-01-30 更新2024-06-08 收录
社会资本
新冠疫情
下载链接:
https://search.dataone.org/view/sha256:9df1ce7d3e10b7b1ce6139e9887c243ec8c6b7e331c9ba699b3f1ed4e3559838
下载链接
链接失效反馈
资源简介:
The Covid-19 pandemic has created a widespread need for social support. Similar to previous crises, we can observe activation in society to meet these needs: citizens have offered practical, emotional, and financial support, often within their social networks, but also to strangers and civil society organisations. In this paper, we examine the role of social capital in receiving social support during the Covid-19 pandemic in Germany using unique micro-level survey data. We examine the importance of three aspects of social capital – the size of one’s support network, social trust, and organisational membership – for receiving (sufficient) social support. We focus on three types of support networks: family and friends, neighbours, and civil society actors. First, we find that while all three elements of social capital matter for receiving social support in the first place, a larger support network and organisational embeddedness matter primarily for receiving support beyond family and friendship networks. Second, civil society actors have been less likely to provide sufficient support in the pandemic, mainly acting in addition to strong ties and providing complementary support for individuals in particular need.
创建时间:
2023-11-08
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

维基百科(wiki2019zh)

维基百科json版包含104万个词条,可作为通用中文语料,用于预训练的语料或构建词向量,也可用于构建知识问答。

github 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

CESNET-TimeSeries24

CESNET-TimeSeries24数据集是由捷克技术大学和CESNET合作创建的,用于网络流量异常检测和预测的时间序列数据集。该数据集包含了40周内275,124个活跃IP地址的网络流量数据,涵盖了多种设备和网络异常类型。数据集的创建过程包括数据捕获、时间序列聚合和匿名化处理,确保了数据的真实性和隐私保护。该数据集主要应用于网络流量监控、资源分配和服务编排等领域,旨在解决网络流量预测和异常检测中的实际问题。

arXiv 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录