five

1.88kW BLDC Sensorless FOC - Sliding Mode vs Flux Observer with FW|电机控制数据集|电力电子数据集

收藏
Mendeley Data2024-01-31 更新2024-06-29 收录
电机控制
电力电子
下载链接:
https://ieee-dataport.org/documents/188kw-bldc-sensorless-foc-sliding-mode-vs-flux-observer-fw
下载链接
链接失效反馈
资源简介:
This dataset is in support of my planned research paper shortly to be submitted to "IEEE Transactions on Power Electronics".In this paper and dataset, speed and the position estimation of BLDC is done using the sensorless vector control method i.e., Field Oriented control (FOC) and observer. The implementation method is the known method of vector control, so any textbook can be referred, with the addition of SMO or flux observer which acts as the "Adaptive Controller" in the estimation of speed. The switching pattern of the 3-phase inverter is implemented using space vector modulation.DIfferences in this paper dataset can be seen as the author has includedperformance comparison using Sliding Mode Observer (SMO) and flux observerPWM switching frequency is varied 44 times from 20 kHz to 2 MHzOpen LoopTransfer Function CompensationRoot Loci,Closed loopAll this is implemented on 32-bit Real-Time microcontroller. The pins usage not mentioned here are used for other General-Purpose-CAN,USB, RS485 etc.PFC is not included in this simulation as it is assumed that PF = 1.There is related dataset "200W BLDC Sensorless FOC - Sliding Mode vs Flux Observer" ,DOI: https://dx.doi.org/10.21227/8rz1-p666These brushless motors and controllers are used in many industries including medical e.g. in Positive Airway Pressure respirators,ventilator.This study comes in handy to decide when designing in practice for industries and also for academia purposes. The author has used these results in designing new 2-3 different complex models(incomplete), may be uploaded later.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Project Gutenberg

Project Gutenberg是一个提供免费电子书的数据集,包含超过60,000本免费电子书,涵盖了文学、历史、科学等多个领域。这些电子书主要以公共领域作品为主,用户可以自由下载和使用。

www.gutenberg.org 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录