The Global Biodiversity Information Facility (GBIF) Marine Data|海洋生物多样性数据集|生态系统研究数据集
收藏
- 全球生物多样性信息机构(GBIF)正式成立,旨在促进全球生物多样性数据的共享和利用。
- GBIF首次发布海洋数据集,标志着海洋生物多样性数据开始纳入其数据共享平台。
- GBIF海洋数据集的规模显著扩大,涵盖了全球多个海洋区域的生物多样性数据。
- GBIF海洋数据集首次应用于全球海洋生物多样性评估,为科学研究和政策制定提供了重要数据支持。
- GBIF海洋数据集的访问量和使用率大幅提升,成为全球海洋生物多样性研究的重要数据来源。
- GBIF海洋数据集进一步扩展,涵盖了更多深海和极地海洋区域的生物多样性数据。
- 1The Global Biodiversity Information Facility (GBIF) Marine Data: A Comprehensive Resource for Marine Biodiversity ResearchGlobal Biodiversity Information Facility · 2018年
- 2Marine Biodiversity Data in the Global Biodiversity Information Facility: Current Status and Future DirectionsUniversity of Copenhagen · 2020年
- 3Using GBIF Data to Assess Marine Biodiversity Patterns and TrendsUniversity of British Columbia · 2021年
- 4The Role of GBIF Marine Data in Global Marine Conservation EffortsUniversity of Queensland · 2022年
- 5Integrating GBIF Marine Data with Remote Sensing for Enhanced Marine Biodiversity MonitoringStanford University · 2023年
中国1km分辨率逐月降水量数据集(1901-2023)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
中国区域交通网络数据集
该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。
data.stats.gov.cn 收录
CMNEE(Chinese Military News Event Extraction dataset)
CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。
github 收录
ChinaTravel
ChinaTravel是由南京大学国家重点实验室开发的一个真实世界基准数据集,专门用于评估语言代理在中国旅行规划中的应用。该数据集涵盖了中国10个最受欢迎城市的旅行信息,包括720个航班和5770趟列车,以及3413个景点、4655家餐厅和4124家酒店的详细信息。数据集通过问卷调查收集用户需求,并设计了一个可扩展的领域特定语言来支持自动评估。ChinaTravel旨在解决复杂的真实世界旅行规划问题,特别是在多兴趣点行程安排和用户偏好满足方面,为语言代理在旅行规划中的应用提供了重要的测试平台。
arXiv 收录
Wafer Defect
该数据集包含了七个主要类别的晶圆缺陷,分别是:BLOCK ETCH、COATING BAD、PARTICLE、PIQ PARTICLE、PO CONTAMINATION、SCRATCH和SEZ BURNT。这些类别涵盖了晶圆在生产过程中可能出现的多种缺陷类型,每一种缺陷都有其独特的成因和表现形式。数据集不仅在类别数量上具有多样性,而且在样本的多样性和复杂性上也展现了其广泛的应用潜力。每个类别的样本均经过精心标注,确保了数据的准确性和可靠性。
github 收录