five

distilabel-reflection-tuning|AI模型调优数据集|复杂概念生成数据集

收藏
huggingface2024-09-06 更新2024-12-12 收录
AI模型调优
复杂概念生成
下载链接:
https://huggingface.co/datasets/gabrielmbmb/distilabel-reflection-tuning
下载链接
链接失效反馈
资源简介:
distilabel-reflection-tuning 数据集是使用 Distilabel 工具创建的合成数据集。它包含指令、模型名称和生成的输出示例,以及关于原始输入和输出文本的元数据。数据集结构包含默认配置,并包括包含 5 个示例的训练分割。该数据集旨在用于 AI 模型的反思调优,特别是用于分析和生成对复杂概念(如结合咖啡店、书店和餐厅的想法)的响应。该数据集可以使用提供的管道脚本和配置文件进行重现。
创建时间:
2024-09-06
原始信息汇总

数据集概述

数据集信息

  • 大小类别: n<1K
  • 特征:
    • instruction: 字符串类型
    • model_name: 字符串类型
    • generation: 字符串类型
    • distilabel_metadata: 结构体类型
      • raw_input_text_generation_0: 列表类型
        • content: 字符串类型
        • role: 字符串类型
      • raw_output_text_generation_0: 字符串类型
  • 分割:
    • train:
      • 字节数: 33374
      • 样本数: 5
  • 下载大小: 55585
  • 数据集大小: 33374

配置

  • 配置名称: default
    • 数据文件:
      • train: data/train-*

标签

  • synthetic
  • distilabel
  • rlaif

数据集结构

  • 配置: default
    • 示例结构: json { "distilabel_metadata": { "raw_input_text_generation_0": [ { "content": "Youre an AI assistant that responds the user with maximum accuracy. To do so, your first will think what the user is asking for, thinking step by step. During this thinking phase, you will have reflections that will help you clarifying ambiguities. In each reflection you will list the possibilities and finally choose one. Between reflections, you can think again. At the end of the thinking, you must draw a conclusion. You only need to generate the minimum text that will help you generating a better output, dont be verbose while thinking. Finally, you will generate an output based on the previous thinking.

This is the output format you have to follow:

u003cthinkingu003e

Here you will think about what the user asked for.

u003creflectionu003e This is a reflection. u003c/reflectionu003e

u003creflectionu003e This is another reflection. u003c/reflectionu003e

u003c/thinkingu003e

u003coutputu003e

Here you will include the output

u003c/outputu003e

", "role": "system" }, { "content": "I have an idea for a new type of restaurant concept. Its a combination of a coffee shop, bookstore, and restaurant all under one roof. The restaurant would serve food inspired by the worlds cuisines and have a "destination of the month" theme, where each month the restaurant would highlight a different country from around the world and the menu would change to reflect the cuisine of that country. The bookstore would have a selection of books that are relevant to the destination of the month.

What do you think of the concept?

To analyze this concept, lets break it down into different components. What are the different components that make up this restaurant concept?

This concept is made up of several components:

  1. A coffee shop
  2. A bookstore
  3. A restaurant
  4. The "destination of the month" theme
  5. the selection of books relevant to the destination of the month

Now that we have identified these components, lets analyze each component separately.

Lets start with the coffee shop. Is the coffee shop concept unique?", "role": "user" } ], "raw_output_text_generation_0": "u003cthinkingu003e

The user has presented a concept for a restaurant that combines a coffee shop, bookstore, and restaurant under one roof. To analyze this concept, we need to break it down into its individual components.

u003creflectionu003e Is the coffee shop concept unique? Possibilities:

  • No, its a common concept.
  • Yes, its unique because its combined with other concepts.
  • The uniqueness is not in the coffee shop itself, but in the combination with other concepts.

I choose the third option: The uniqueness is not in the coffee shop itself, but in the combination with other concepts. u003c/reflectionu003e

u003creflectionu003e What makes the coffee shop component work in this concept? Possibilities:

  • The atmosphere.
  • The variety of coffee.
  • The connection with the restaurant and bookstore.
  • The destination of the month theme.

I choose the third option: The connection with the restaurant and bookstore. u003c/reflectionu003e

u003c/thinkingu003e

u003coutputu003e

The coffee shop component is not unique by itself, but its connection with the restaurant and bookstore makes it an integral part of the overall concept. The combination of these three components creates a unique atmosphere and experience for customers. The coffee shop can serve as a hub where customers can relax and enjoy a coffee while browsing books or waiting for their food, which is inspired by the destination of the month." }, "generation": "u003cthinkingu003e

The user has presented a concept for a restaurant that combines a coffee shop, bookstore, and restaurant under one roof. To analyze this concept, we need to break it down into its individual components.

u003creflectionu003e Is the coffee shop concept unique? Possibilities:

  • No, its a common concept.
  • Yes, its unique because its combined with other concepts.
  • The uniqueness is not in the coffee shop itself, but in the combination with other concepts.

I choose the third option: The uniqueness is not in the coffee shop itself, but in the combination with other concepts. u003c/reflectionu003e

u003creflectionu003e What makes the coffee shop component work in this concept? Possibilities:

  • The atmosphere.
  • The variety of coffee.
  • The connection with the restaurant and bookstore.
  • The destination of the month theme.

I choose the third option: The connection with the restaurant and bookstore. u003c/reflectionu003e

u003c/thinkingu003e

u003coutputu003e

The coffee shop component is not unique by itself, but its connection with the restaurant and bookstore makes it an integral part of the overall concept. The combination of these three components creates a unique atmosphere and experience for customers. The coffee shop can serve as a hub where customers can relax and enjoy a coffee while browsing books or waiting for their food, which is inspired by the destination of the month.", "instruction": "I have an idea for a new type of restaurant concept. Its a combination of a coffee shop, bookstore, and restaurant all under one roof. The restaurant would serve food inspired by the worlds cuisines and have a "destination of the month" theme, where each month the restaurant would highlight a different country from around the world and the menu would change to reflect the cuisine of that country. The bookstore would have a selection of books that are relevant to the destination of the month.

What do you think of the concept?

To analyze this concept, lets break it down into different components. What are the different components that make up this restaurant concept?

This concept is made up of several components:

  1. A coffee shop
  2. A bookstore
  3. A restaurant
  4. The "destination of the month" theme
  5. the selection of books relevant to the destination of the month

Now that we have identified these components, lets analyze each component separately.

Lets start with the coffee shop. Is the coffee shop concept unique?", "model_name": "meta-llama/Meta-Llama-3.1-70B-Instruct" }

引用

@misc{xu2024magpiealignmentdatasynthesis, title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin}, year={2024}, eprint={2406.08464}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.08464}, }

AI搜集汇总
数据集介绍
main_image_url
构建方式
distilabel-reflection-tuning数据集通过distilabel工具构建,采用了一种基于反射调整的生成方法。具体而言,数据集通过模拟AI助手的思考过程,生成了一系列包含指令、模型名称、生成文本以及元数据的样本。每个样本的生成过程都遵循了严格的格式要求,确保生成的文本具有逻辑性和一致性。数据集的构建过程通过pipeline.yaml文件进行配置,用户可以通过distilabel CLI工具轻松复现整个生成流程。
使用方法
使用distilabel-reflection-tuning数据集时,用户可以通过Hugging Face的datasets库轻松加载数据。数据集提供了默认配置,用户只需调用load_dataset函数即可加载整个数据集。加载后的数据可以直接用于模型训练或分析,特别适合用于研究模型生成文本的决策过程和反思机制。此外,用户还可以通过distilabel CLI工具运行pipeline.yaml文件,复现数据集的生成过程,进一步探索数据集的构建细节。
背景与挑战
背景概述
distilabel-reflection-tuning数据集是由Argilla团队基于distilabel框架构建的,旨在通过合成数据生成技术提升语言模型的自我反思与推理能力。该数据集的核心研究问题在于如何通过结构化提示(prompting)和反思机制,增强模型在复杂任务中的推理与决策能力。数据集的设计灵感来源于近年来对大型语言模型(LLMs)对齐问题的研究,尤其是如何通过数据合成技术生成高质量的对齐数据。该数据集的出现为语言模型的自我优化与对齐提供了新的研究路径,推动了AI模型在复杂任务中的表现提升。
当前挑战
distilabel-reflection-tuning数据集在构建过程中面临多重挑战。首先,如何设计有效的反思机制以引导模型生成高质量的推理内容是一个关键问题。数据集通过结构化提示和分步反思的方式,要求模型在生成输出前进行多步思考,这增加了数据生成的复杂性。其次,数据合成过程中需要确保生成内容的多样性与一致性,避免模型陷入重复或低质量的输出模式。此外,数据集的规模较小(n<1K),如何在有限的数据量下保持模型的泛化能力也是一个重要挑战。最后,如何通过自动化工具(如distilabel CLI)高效地复现数据生成流程,确保数据集的透明性与可复现性,也是构建过程中需要解决的技术难题。
常用场景
经典使用场景
distilabel-reflection-tuning数据集在自然语言处理领域中被广泛应用于模型微调和生成任务。该数据集通过提供详细的指令和生成内容,帮助研究人员和开发者训练和优化语言模型。其独特的结构使得模型能够在生成过程中进行反思和调整,从而提升生成文本的质量和准确性。这种数据集特别适用于需要高精度生成任务的场景,如对话系统、内容创作和知识问答等。
解决学术问题
该数据集解决了语言模型在生成任务中常见的模糊性和不一致性问题。通过引入反思机制,模型能够在生成过程中逐步澄清歧义,选择最优的生成路径。这种方法显著提升了生成文本的逻辑性和连贯性,为自然语言处理领域的研究提供了新的思路和工具。其意义在于推动了生成模型的自我优化能力,为未来的模型设计和训练提供了重要的参考。
实际应用
在实际应用中,distilabel-reflection-tuning数据集被广泛用于智能客服、内容生成和知识问答系统。通过使用该数据集,企业能够训练出更加智能和精准的语言模型,提升用户体验和服务质量。例如,在智能客服中,模型能够通过反思机制生成更加准确和人性化的回复,从而提高客户满意度。在内容生成领域,该数据集帮助创作者生成更加连贯和有逻辑性的文本,提升内容的质量和吸引力。
数据集最近研究
最新研究方向
在自然语言处理领域,distilabel-reflection-tuning数据集的研究方向主要集中在通过反思机制提升模型生成内容的准确性和逻辑性。该数据集通过引入反思步骤,使模型在生成输出前能够进行多层次的思考,从而减少歧义并提高输出的质量。这一方法在对话系统和内容生成任务中具有重要应用,尤其是在需要高精度和逻辑连贯性的场景中。近年来,随着大模型如Meta-Llama-3.1-70B-Instruct的广泛应用,如何通过反思机制优化模型输出已成为研究热点。该数据集为这一领域提供了宝贵的数据支持,推动了基于反思的生成模型研究的发展。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

TCIA

TCIA(The Cancer Imaging Archive)是一个公开的癌症影像数据集,包含多种癌症类型的医学影像数据,如CT、MRI、PET等。这些数据通常与临床和病理信息相结合,用于癌症研究和临床试验。

www.cancerimagingarchive.net 收录

红外谱图数据库

收集整理红外谱图实验手册等数据,建成了红外谱图数据库。本数据库收录了常见化合物的红外谱图。主要包括化合物数据和对应的红外谱图数据。其中,原始红外谱图都进行了数字化处理,从而使谱峰检索成为可能。用户可以在数据库中检索指定化合物的谱图,也可以提交谱图/谱峰数据,以检索与之相似的谱图数据,以协助进行谱图鉴定。

国家基础学科公共科学数据中心 收录

中国行政区划数据

本项目为中国行政区划数据,包括省级、地级、县级、乡级和村级五级行政区划数据。数据来源于国家统计局,存储格式为sqlite3 db文件,支持直接使用数据库连接工具打开。

github 收录