five

KenSwQuAD – A Question Answering Dataset for Swahili Low Resource Language|自然语言处理数据集|低资源语言数据集

收藏
DataONE2023-11-21 更新2024-06-08 收录
自然语言处理
低资源语言
下载链接:
https://search.dataone.org/view/sha256:c5ac5737352417d3d82bc011df048d1bfc608322817799ceda9e7d4da4424b24
下载链接
链接失效反馈
资源简介:
This research developed a Kencorpus Swahili Question Answering Dataset KenSwQuAD from raw data of Swahili language, which is a low resource language predominantly spoken in Eastern African and also has speakers in other parts of the world. Question Answering datasets are important for machine comprehension of natural language processing tasks such as internet search and dialog systems. However, before such machine learning systems can perform these tasks, they need training data such as the gold standard Question Answering (QA) set developed in this research. The research engaged annotators to formulate question answer pairs from Swahili texts that had been collected by the Kencorpus project, a Kenyan languages corpus that collected data from three Kenyan languages. The total Swahili data collection had 2,585 texts, out of which we annotated 1,445 story texts with at least 5 QA pairs each, resulting into a final dataset of 7,526 QA pairs. A quality assurance set of 12.5% of the annotated texts was subjected to re-evaluation by different annotators who confirmed that the QA pairs were all correctly annotated. A proof of concept on applying the set to machine learning on the question answering task confirmed that the dataset can be used for such practical tasks. The research therefore developed KenSwQuAD, a question-answer dataset for Swahili that is useful to the natural language processing community who need training and gold standard sets for their machine learning applications. The research also contributed to the resourcing of the Swahili language which is important for communication around the globe. Updating this set and providing similar sets for other low resource languages is an important research area that is worthy of further research. Acknowledgement of annotators: Rose Felynix Nyaboke, Alice Gachachi Muchemi, Patrick Ndung'u, Eric Omundi Magutu, Henry Masinde, Naomi Muthoni Gitau, Mark Bwire Erusmo, Victor Orembe Wandera, Frankline Owino, Geoffrey Sagwe Ombui
创建时间:
2023-12-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

微博与抖音评论数据集

数据集源自微博平台与抖音平台的评论信息,基于两个热点事件来对评论等信息进行爬取收集形成数据集。原数据一共3W5条,但消极评论与中立评论远远大于积极评论。因此作特殊处理后,积极数据2601条,消极数据2367条,中立数据2725条,共7693条数据。

github 收录

Fruits-360

一个高质量的水果图像数据集,包含多种水果的图像,如苹果、香蕉、樱桃等,总计42345张图片,分为训练集和验证集,共有64个水果类别。

github 收录

中国车牌识别数据集(7类,33万张)

这是一个高质量、平衡的中国车牌识别数据集,包含了33万张各类中国车牌的图片。数据集经过精心设计,确保了图像质量的优秀和大部分各类车牌类型的平衡分布。这个数据集非常适合用于训练和评估车牌识别模型。

魔搭社区 收录