HazyDet|无人机数据集|物体检测数据集
收藏HazyDet: Open-source Benchmark for Drone-View Object Detection with Depth-cues in Hazy Scenes
数据集概述
HazyDet-365K
-
下载地址: Baidu Cloud
-
数据结构:
HazyDet-365K |-- train |-- clean images |-- hazy images |-- labels |-- val |-- clean images |-- hazy images |-- labels |-- test |-- clean images |-- hazy images |-- labels |-- RDDTS |-- hazy images |-- labels
-
密码:
grok
模型与性能
检测器 (Detectors)
模型 | 骨干网络 | 参数数量 (M) | GFLOPs | mAP on Test-set | mAP on RDDTS | 配置文件 | 权重文件 |
---|---|---|---|---|---|---|---|
YOLOv3 | Darknet53 | 61.63 | 20.19 | 35.0 | 19.2 | config | weight |
GFL | ResNet50 | 32.26 | 198.65 | 36.8 | 13.9 | config | weight |
YOLOX | CSPDarkNet | 8.94 | 13.32 | 42.3 | 24.7 | config | weight |
RepPoints | ResNet50 | 36.83 | 184.32 | 43.8 | 21.3 | config | weight |
FCOS | ResNet50 | 32.11 | 191.48 | 45.9 | 22.8 | config | weight |
Centernet | ResNet50 | 32.11 | 191.49 | 47.2 | 23.8 | config | weight |
ATTS | ResNet50 | 32.12 | 195.58 | 50.4 | 25.1 | config | weight |
DDOD | ResNet50 | 32.20 | 173.05 | 50.7 | 26.1 | config | weight |
VFNet | ResNet50 | 32.89 | 187.39 | 51.1 | 25.6 | config | weight |
TOOD | ResNet50 | 32.02 | 192.51 | 51.4 | 25.8 | config | weight |
Sparse RCNN | ResNet50 | 108.54 | 147.45 | 27.7 | 10.4 | config | weight |
Dynamic RCNN | ResNet50 | 41.35 | 201.72 | 47.6 | 22.5 | config | weight |
Faster RCNN | ResNet50 | 41.35 | 201.72 | 48.7 | 23.6 | config | weight |
Libra RCNN | ResNet50 | 41.62 | 209.92 | 49.0 | 23.7 | config | weight |
Grid RCNN | ResNet50 | 64.46 | 317.44 | 50.5 | 25.2 | config | weight |
Cascade RCNN | ResNet50 | 69.15 | 230.40 | 51.6 | 26.0 | config | weight |
Conditional DETR | ResNet50 | 43.55 | 94.17 | 30.5 | 11.7 | config | weight |
DAB DETR | ResNet50 | 43.70 | 97.02 | 31.3 | 11.7 | config | weight |
Deform DETR | ResNet50 | 40.01 | 192.51 | 51.9 | 26.5 | config | weight |
FCOS-DeCoDet | ResNet50 | 34.62 | 225.37 | 47.4 | 24.3 | config | weight |
VFNet-DeCoDet | ResNet50 | 34.61 | 249.91 | 51.5 | 25.9 | config | weight |
去雾 (Dehazing)
类型 | 方法 | PSNR | SSIM | mAP on Test-set | mAP on RDDTS | 权重文件 |
---|---|---|---|---|---|---|
Baseline | Faster RCNN | - | - | 39.5 | 21.5 | weight |
Dehaze | GridDehaze | 12.66 | 0.713 | 38.9 (-0.6) | 19.6 (-1.9) | weight |
Dehaze | MixDehazeNet | 15.52 | 0.743 | 39.9 (+0.4) | 21.2 (-0.3) | weight |
Dehaze | DSANet | 19.01 | 0.751 | 40.8 (+1.3) | 22.4 (+0.9) | weight |
Dehaze | FFA | 19.25 | 0.798 | 41.2 (+1.7) | 22.0 (+0.5) | weight |
Dehaze | DehazeFormer | 17.53 | 0.802 | 42.5 (+3.0) | 21.9 (+0.4) | weight |
Dehaze | gUNet | 19.49 | 0.822 | 42.7 (+3.2) | 22.2 (+0.7) | weight |
Dehaze | C2PNet | 21.31 | 0.832 | 42.9 (+3.4) | 22.4 (+0.9) | weight |
Dehaze | DCP | 16.98 | 0.824 | 44.0 (+4.5) | 20.6 (-0.9) | weight |
Dehaze | RIDCP | 16.15 | 0.718 | 44.8 (+5.3) | 24.2 (+2.7) | weight |

- 1HazyDet: Open-source Benchmark for Drone-view Object Detection with Depth-cues in Hazy Scenes石家庄校区,解放军工程大学 · 2024年
Literature Database, XML, NBVC, Oct 2017
Literature Database, XML format, the Natural Resources of Naval Base Ventura County
Mendeley Data 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
Data_Sheet_1_Real-World Healthcare Resource Utilization and Cost Burden Assessment for Adults With Generalized Myasthenia Gravis in the United States.docx
IntroductionLimited evidence exists for healthcare resource utilization (HCRU) and costs associated with generalized myasthenia gravis (gMG), a rare autoimmune disorder, for adults in the United States.MethodsAdults with ≥1 diagnostic claim for MG between 2014 and 2019 were identified using Symphony Health's Integrated Dataverse®. Using a novel algorithm, HCRU and costs over 12 months following index dates were evaluated for patients with gMG including those with exacerbation events. For patients who experienced crisis events, HCRU and costs were analyzed during the 36 months preceding, during, and 12 months following the events.ResultsMean HCRU and costs were higher for newly diagnosed patients compared with previously diagnosed patients (hospitalizations: 0.46 vs. 0.34; all-cause costs: $26,419.20 vs. $24,941.47; direct costs for gMG treatments: $9,890.37 vs. $9,186.47) and further increased for patients with exacerbation events (hospitalizations: 0.72; all-cause costs: $43,734.15; direct costs for gMG treatments: $21,550.02). For patients who experienced crisis events, HCRU and costs markedly increased during the 12 months immediately before the crisis event (hospitalizations: 1.35; all-cause costs: $49,236.68) compared with the 2 preceding years and increased further during the 12 months following the crisis index date (hospitalizations: 2.78; all-cause costs: $173,956.99). Cost increases were, in large part, attributed to treatments received.DiscussionNew diagnosis, exacerbation, and crisis events were drivers of HCRU and cost for patients with gMG. Particularly, high costs of gMG-specific medications associated with intervention for exacerbation and crisis events contributed to increased all-cause costs.
frontiersin.figshare.com 收录
ImageNet-A
The ImageNet-A dataset consists of real-world, unmodified, and naturally occurring examples that are misclassified by ResNet models.
Papers with Code 收录
SHHS Sleep Heart Health Study Dataset
SHHS(Sleep Heart Health Study)数据集是一个大型多中心研究项目,旨在研究睡眠障碍与心血管疾病之间的关系。数据集包括了参与者的睡眠记录、心血管健康指标、生活习惯、遗传信息等多方面的数据。
sleepdata.org 收录