five

Data from: DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities|生物多样性监测数据集|DNA条形码数据集

收藏
DataONE2017-12-06 更新2024-06-26 收录
生物多样性监测
DNA条形码
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Morphology-based profiling of benthic communities has been extensively applied to aquatic ecosystems' health assessment. However, it remains a low-throughput, and sometimes ambiguous, procedure. Despite DNA metabarcoding has been applied to marine benthos, a comprehensive approach providing species-level identifications for estuarine macrobenthos is still lacking. Here we report a combination of experimental and field studies to assess the aptitude of COI metabarcoding to provide robust species-level identifications for high-throughput monitoring of estuarine macrobenthos. To investigate the ability of metabarcoding to detect all species present in bulk DNA extracts, we contrived three phylogenetically diverse communities, and applied four different primer pairs to generate PCR products within the COI barcode region. Between 78-83% of the species in the contrived communities were recovered through HTS. Subsequently, we compared morphology and metabarcoding-based approaches to determine the species composition from four distinct estuarine sites. Our results indicate that species richness would be considerably underestimated if only morphological methods were used: globally 27 species identified through morphology versus 61 detected by metabarcoding. Although further refinement is required to improve efficiency and output of this approach, here we show the great aptitude of COI metabarcoding to provide high quality and auditable species identifications in estuarine macrobenthos monitoring.
创建时间:
2017-12-06
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

Subway Dataset

该数据集包含了全球多个城市的地铁系统数据,包括车站信息、线路图、列车时刻表、乘客流量等。数据集旨在帮助研究人员和开发者分析和模拟城市交通系统,优化地铁运营和乘客体验。

www.kaggle.com 收录