five

Supplementary Material for: Determinants of Advanced Bone Age in Childhood Obesity|儿童肥胖数据集|骨龄提前数据集

收藏
DataCite Commons2020-09-02 更新2024-07-25 收录
儿童肥胖
骨龄提前
下载链接:
https://karger.figshare.com/articles/dataset/Supplementary_Material_for_Determinants_of_Advanced_Bone_Age_in_Childhood_Obesity/4806598/2
下载链接
链接失效反馈
资源简介:
<i>Background:</i> Childhood obesity is associated with advanced bone age (BA). Previous studies suggest that androgens, oestrogens, sex hormone-binding globulin, and insulin are responsible for this phenomenon, but results are contradictory and might be biased by confounders. We aim to elucidate this matter by applying a multivariate approach. <i>Method:</i> We performed a correlation analysis of BA standard deviation score (SDS) with age- and sex-specific SDS for androgens, oestrogens, and with indicators of insulin secretion derived from oral glucose tolerance testing, in a group of obese children. A multivariate analysis was performed to investigate which parameters were independently predictive of BA SDS. <i>Results:</i> In this cohort (<i>n</i> = 101; mean age 10.9 years; mean BA 11.8 years; mean BMI SDS 3.3), BMI SDS was significantly correlated to BA SDS (<i>r</i> = 0.55, <i>p</i> &lt; 0.001). In a regression analysis in the total cohort (<i>B</i> = 0.27, <i>p</i> &lt; 0.001) as well as in females (<i>B</i> = 0.34, <i>p</i> = 0.042), males (<i>B</i> = 0.31, <i>p</i> = 0.006), and pubertal children (<i>B</i> = 0.32, <i>p</i> = 0.046), dehydroepiandrosterone sulphate (DHEAS) showed a positive, independent association with BA SDS. No association with indicators of insulin secretion was found. <i>Conclusion:</i> BMI SDS is highly correlated to BA SDS in obese children. Increased DHEAS has a central role in advanced BA in obese children.
提供机构:
Karger Publishers
创建时间:
2017-03-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

Traditional-Chinese-Medicine-Dataset-SFT

该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。

huggingface 收录