five

MichalMlodawski/closed-open-eyes|图像分类数据集|目标检测数据集

收藏
hugging_face2024-07-20 更新2024-06-29 收录
图像分类
目标检测
下载链接:
https://hf-mirror.com/datasets/MichalMlodawski/closed-open-eyes
下载链接
链接失效反馈
资源简介:
Open and Closed Eyes数据集是一个用于计算机视觉和机器学习任务的数据集,特别适用于识别和区分不同场景下的睁眼和闭眼状态。数据集包含约126,000个平衡样本,存储为Parquet文件,每个记录包含图像ID、左右眼的边界框坐标、标签(睁眼或闭眼)以及图像数据。数据集涵盖了多种类别,包括年龄、性别、场景、肤色、面部焦点、服装、发型、时间、天气、情绪和配饰等。此外,README还提供了数据集的伦理考虑、维护建议和引用方式。

The Open and Closed Eyes Dataset is designed for computer vision and machine learning tasks, particularly for recognizing and distinguishing between open and closed eyes. This dataset includes AI-generated images with a balanced distribution across various categories such as age groups, gender, scenery, skin color, face focus, clothing, hairstyle, time of day, weather, emotion, and accessories. The dataset is stored in Parquet files and includes metadata like image ID, bounding box coordinates for eyes, labels indicating open or closed eyes, and image data including the file and filename. The dataset is intended to be used for training and evaluating models, with ethical considerations and potential biases noted.
提供机构:
MichalMlodawski
原始信息汇总

Open and Closed Eyes Dataset

概述

  • 名称: Open and Closed Eyes Dataset
  • 语言: 英语
  • 大小: 100K<n<1M
  • 任务类别: 图像分类, 目标检测
  • 标签: ai-generated, balanced-dataset
  • 许可证: odc-by

数据集结构

  • 存储格式: Parquet文件
  • 文件命名: dataset_XXX.parquet

数据元素

  • Image_id: 图像的唯一标识符
  • Left_eye_react: 左眼边界框坐标
  • Right_eye_react: 右眼边界框坐标
  • Label: 眼睛状态标签(open_eyes 或 closed_eyes)
  • Image_data:
    • file: 图像数据(字节格式)
    • filename: 图像文件名(基于SHA256校验和)

类别和属性

  • Eyes:
    • Open eyes
    • Closed eyes
  • Age Groups:
    • Infant, Young adult, Adult, Middle-aged, Senior, Elderly
  • Gender:
    • Female, Male
  • Scenery:
    • Inside train, Beach, Mountain, City, Forest, Desert, Car interior, Kitchen, Park, Office, Home living room, Space, Underwater, Airport terminal, Concert hall, Museum, Gym, Restaurant, Library, Farm, Art gallery, Rooftop, Garden, Cave, Waterfall, Castle interior, Shopping mall, University lecture hall, Ski resort lodge, Tropical beach house, Ancient temple interior, Futuristic city apartment, Hot air balloon basket, Carnival tent, Haunted house interior, Volcano observatory, Space station interior, Jungle treehouse, Arctic research station, Savanna safari camp, Cozy bedroom, Modern bathroom, Stylish home office, Luxurious hotel room, Rustic cabin interior, Industrial loft, Minimalist studio apartment, Vintage diner, School classroom, Hospital ward, Movie theater, Computer server room, Greenhouse interior, Subway station, Airport control tower, Lighthouse interior, Medieval tavern, Futuristic laboratory, Underground bunker, Treehouse interior, Ancient ruins, Underwater cave, Zen garden, Post-apocalyptic cityscape, Steampunk workshop, Fairy tale cottage, Cyberpunk street, Floating sky island, Abandoned amusement park, Crystal cave, Alien planet landscape, Medieval castle courtyard, Deep space nebula, Rainforest canopy, Arctic ice shelf, Volcanic landscape, Bustling bazaar, Tranquil monastery, Neon-lit nightclub, Retro 1950s diner
  • Skin Color:
    • White, Black, Brown, Light, Dark, Olive, Tan, Albino, Freckled, Vitiligo, Reddish, Yellowish
  • Face Focus:
    • Focus on left side, Focus on right side, Focus on center, Focus on top, Focus on bottom, Focus on eyes, Focus on nose, Focus on mouth, Focus on chin, Focus on forehead, Full face focus
  • Clothing:
    • Casual, Formal, Sports, Traditional, Futuristic, Summer, Winter, Business, Swimwear, Nightwear, Costume, Uniform, Vintage, Bohemian, Punk, Gothic, High fashion, Streetwear, Cyberpunk, Steampunk, Medieval, Renaissance, Space suit, Superhero costume, Military uniform, Royalty attire, Hippie, Grunge, Preppy, Hip-hop fashion, Emo fashion
  • Hairstyle:
    • Short hair, Long hair, Curly hair, Straight hair, Braided hair, Bald, Wavy hair, Ponytail, Buzz cut, Dreadlocks, Mohawk, Afro, Pixie cut, Bob cut, Undercut, Mullet, Side-swept hair, Spiky hair, Slicked back hair, Messy hair, Ombre hair, Highlighted hair, Two-toned hair, Asymmetrical hair, Pompadour, Quiff, Faux hawk, Bowl cut, Shag haircut, Layered hair, Feathered hair, Cornrows, Man bun, Topknot, Crown braid, Fishtail braid
  • Time of Day:
    • Early morning, Mid-morning, Late morning, Noon, Early afternoon, Mid-afternoon, Late afternoon, Early evening, Dusk, Night, Midnight, Pre-dawn
  • Weather:
    • Sunny, Partly cloudy, Overcast, Light rain, Heavy rain, Thunderstorm, Snowy, Blizzard, Foggy, Misty, Windy, Calm, Hail, Sleet, Hurricane, Tornado, Sandstorm, Heat wave, Cold snap, Rainbow
  • Emotion:
    • Happy, Sad, Angry, Surprised, Neutral, Scared, Disgusted, Confused, Excited, Thoughtful, Amused, Bored, Confident, Curious, Embarrassed, Proud, Relieved, Anxious, Hopeful, Determined
  • Accessories:
    • Hat, Cap, Beanie, Scarf, Earrings, Necklace, Bracelet, Ring, Watch, Tie, Bow tie, Bandana, Headband, Hair clip, Belt, Suspenders, Gloves, Handbag, Backpack, Umbrella, Cane, Walking stick, Monocle, Pocket watch, Brooch, Lapel pin, None

使用方法

  1. 访问数据: 使用PyArrow或Pandas加载Parquet文件。
  2. 图像数据: 使用PIL或OpenCV解码和显示图像。
  3. 边界框: 使用边界框坐标精确定位眼睛。
  4. 标签和元数据: 根据提供的标签和元数据过滤和分类图像。

伦理考虑和限制

  • 潜在的NSFW内容: 可能包含不适合工作环境的内容。
  • 文化特异性: 可能不完全代表所有文化背景。
  • 潜在偏见: 生成过程中可能存在性别、年龄和种族偏见。
  • 图像多样性和复杂性: 某些方面的多样性和复杂性可能有限。

引用

@misc{open_closed_eyes2024, author = {Michał Młodawski}, title = {Open and Closed Eyes Dataset}, month = July, year = 2024, url = {https://huggingface.co/datasets/MichalMlodawski/closed-open-eyes}, }

用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

Kwaai/food101

该数据集名为Food-101,主要用于图像分类任务。数据集包含101种食物类别,共计101,000张图像。每个类别包含250张经过人工审核的测试图像和750张训练图像。训练图像未经过清洗,可能包含一些噪声,如颜色过于鲜艳或标签错误。所有图像的最大边长被调整为512像素。数据集分为训练集和验证集,训练集包含75,750张图像,验证集包含25,250张图像。数据集的字段包括图像和标签,图像为PIL.Image.Image对象,标签为整数分类标签。

hugging_face 收录

OMIM (Online Mendelian Inheritance in Man)

OMIM是一个包含人类基因和遗传疾病信息的在线数据库。它提供了详细的遗传疾病描述、基因定位、相关文献和临床信息。数据集内容包括疾病名称、基因名称、基因定位、遗传模式、临床特征、相关文献引用等。

www.omim.org 收录

GFS

数据来源采自美国国家环境预报中心的GFS(全球预报系统),该系统每天发布4次全球范围的气象数据,分辨率最高可达到0.25° x 0.25°。GFS数据提供FTP下载方式:https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/。每次发布的数据保存在命名为gfs.YYYYMMDDHH的文件夹中。本次需要的数据精度为0.25°(0p25),所以数据的文件名为:gfs.t{ HH }z.pgrb2.0p25.f{ XXX }

地球大数据科学工程 收录