five

riyadahmadov/StudentPerformance|教育数据集|学生表现数据集

收藏
hugging_face2024-04-23 更新2024-06-12 收录
教育
学生表现
下载链接:
https://hf-mirror.com/datasets/riyadahmadov/StudentPerformance
下载链接
链接失效反馈
资源简介:
该数据集包含多个特征,如学校、性别、年龄、地址、家庭大小、父母状态、父母教育程度、父母职业、上学原因、监护人、通勤时间、学习时间、失败次数、学校支持、家庭支持、是否付费、课外活动、是否上过幼儿园、是否想继续高等教育、是否有互联网、是否有恋爱关系、家庭关系、空闲时间、外出时间、工作日饮酒、周末饮酒、健康状况、缺勤次数以及三个学期的成绩(G1, G2, G3)。数据集包含649个训练样本,总大小为161469字节。

该数据集包含多个特征,如学校、性别、年龄、地址、家庭大小、父母状态、父母教育程度、父母职业、上学原因、监护人、通勤时间、学习时间、失败次数、学校支持、家庭支持、是否付费、课外活动、是否上过幼儿园、是否想继续高等教育、是否有互联网、是否有恋爱关系、家庭关系、空闲时间、外出时间、工作日饮酒、周末饮酒、健康状况、缺勤次数以及三个学期的成绩(G1, G2, G3)。数据集包含649个训练样本,总大小为161469字节。
提供机构:
riyadahmadov
原始信息汇总

数据集概述

数据集特征

  • school:学校名称,数据类型为字符串。
  • sex:性别,数据类型为字符串。
  • age:年龄,数据类型为整数。
  • address:地址,数据类型为字符串。
  • famsize:家庭规模,数据类型为字符串。
  • Pstatus:父母同住状态,数据类型为字符串。
  • Medu:母亲的学历,数据类型为整数。
  • Fedu:父亲的学历,数据类型为整数。
  • Mjob:母亲的工作,数据类型为字符串。
  • Fjob:父亲的工作,数据类型为字符串。
  • reason:选择学校的原因,数据类型为字符串。
  • guardian:监护人,数据类型为字符串。
  • traveltime:通勤时间,数据类型为整数。
  • studytime:学习时间,数据类型为整数。
  • failures:不及格次数,数据类型为整数。
  • schoolsup:额外教育支持,数据类型为字符串。
  • famsup:家庭额外支持,数据类型为字符串。
  • paid:额外课程,数据类型为字符串。
  • activities:课外活动,数据类型为字符串。
  • nursery:幼儿园,数据类型为字符串。
  • higher:高等教育意向,数据类型为字符串。
  • internet:互联网使用情况,数据类型为字符串。
  • romantic:恋爱关系,数据类型为字符串。
  • famrel:家庭关系质量,数据类型为整数。
  • freetime:业余时间,数据类型为整数。
  • goout:外出频率,数据类型为整数。
  • Dalc:工作日酒精消费,数据类型为整数。
  • Walc:周末酒精消费,数据类型为整数。
  • health:健康状况,数据类型为整数。
  • absences:缺勤次数,数据类型为整数。
  • G1:第一学期成绩,数据类型为整数。
  • G2:第二学期成绩,数据类型为整数。
  • G3:最终成绩,数据类型为整数。

数据集划分

  • train:训练集,包含649个样本,数据大小为161469字节。

数据集大小

  • 下载大小:22147字节。
  • 数据集总大小:161469字节。
AI搜集汇总
数据集介绍
main_image_url
构建方式
在教育数据分析领域,riyadahmadov/StudentPerformance数据集的构建旨在深入探究学生学业表现的多维度影响因素。该数据集通过收集来自不同学校的学生信息,涵盖了学生的基本背景、家庭环境、学习习惯及学业成绩等多个方面。具体而言,数据集包括学生的性别、年龄、家庭住址、家庭规模、父母教育程度、父母职业、监护人信息等社会经济特征,以及学生的学习时间、课外活动参与情况、网络使用情况等行为特征。此外,数据集还记录了学生的学业失败次数、缺勤情况及最终的学业成绩(G1、G2、G3),从而为研究者提供了一个全面的学生学业表现分析框架。
特点
riyadahmadov/StudentPerformance数据集的显著特点在于其多维度的数据结构和丰富的特征变量。该数据集不仅包含了学生的基本人口统计信息,还涵盖了家庭背景、教育资源、学习习惯及社交行为等多个方面的详细数据。这些特征的多样性使得研究者能够从多个角度分析影响学生学业表现的因素,从而为教育政策制定和教学实践提供科学依据。此外,数据集中的定量和定性特征相结合,使得研究者可以采用多种统计和机器学习方法进行深入分析,进一步挖掘潜在的关联和规律。
使用方法
riyadahmadov/StudentPerformance数据集适用于多种教育研究场景,尤其是在探究学生学业表现的影响因素方面。研究者可以通过分析数据集中的特征变量,如家庭背景、学习时间、课外活动等,来预测学生的学业成绩或识别影响学业表现的关键因素。此外,该数据集还可用于开发和验证教育领域的机器学习模型,例如分类模型用于预测学生的学业成功与否,或回归模型用于预测学生的具体学业成绩。在使用该数据集时,研究者应根据具体研究问题选择合适的特征和模型,并结合统计分析方法进行深入探讨,以确保研究结果的科学性和可靠性。
背景与挑战
背景概述
学生学业表现数据集(riyadahmadov/StudentPerformance)聚焦于教育领域的核心问题,旨在通过量化分析学生的背景信息与学业成绩之间的关系。该数据集由Riyad Ahmadov创建,涵盖了学生的学校、性别、年龄、家庭背景、学习习惯、社交活动等多维度特征,以及他们在不同学科中的成绩表现。这一数据集的构建为教育研究者提供了一个宝贵的资源,用以探索影响学生学业表现的多重因素,进而为教育政策的制定和教学方法的优化提供科学依据。
当前挑战
该数据集在构建过程中面临多重挑战。首先,数据集的特征维度广泛,涵盖了学生的社会背景、家庭环境、学习习惯等多个方面,如何有效整合这些信息并确保其相关性是一个重要挑战。其次,数据集中的特征类型多样,包括定量和定性数据,如何在分析过程中处理这些异质数据以确保模型的准确性和鲁棒性也是一个关键问题。此外,数据集的样本量相对有限,如何在有限的样本中挖掘出有意义的模式和规律,同时避免过拟合,是研究者需要克服的另一挑战。
常用场景
经典使用场景
在教育领域,riyadahmadov/StudentPerformance数据集的经典使用场景主要集中在学生学业表现的预测与分析。通过整合学生的背景信息、家庭环境、学习习惯等多维度数据,研究者能够构建模型,预测学生的学业成绩,如G1、G2和G3等关键指标。这种预测不仅有助于教育者及时调整教学策略,还能为学生提供个性化的学习建议,从而提升整体教育质量。
解决学术问题
该数据集有效解决了教育研究中关于学生学业表现影响因素的复杂性问题。通过量化分析学生的社会经济背景、家庭支持、学习时间等变量,研究者能够揭示这些因素与学业成绩之间的潜在关联,进而为教育政策制定提供科学依据。此外,该数据集还为探索个性化教育模式提供了数据支持,推动了教育公平与效率的双重提升。
衍生相关工作
基于riyadahmadov/StudentPerformance数据集,研究者们开展了多项经典工作,包括学生学业表现的预测模型优化、个性化学习路径推荐算法设计等。此外,该数据集还激发了关于教育公平性、学生心理健康与学业表现关系的深入研究。这些衍生工作不仅丰富了教育数据科学的研究内容,也为实际教育应用提供了理论支持和技术方案。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录