five

Preoperative localization for pulmonary nodules: a meta-analysis of coil and liquid materials|肺结节治疗数据集|CT引导定位数据集

收藏
DataCite Commons2024-09-30 更新2024-08-19 收录
肺结节治疗
CT引导定位
下载链接:
https://tandf.figshare.com/articles/dataset/Preoperative_localization_for_pulmonary_nodules_a_meta-analysis_of_coil_and_liquid_materials/25540176
下载链接
链接失效反馈
资源简介:
This study was designed to conduct pooled comparisons of the relative clinical efficacy and safety of computed tomography (CT)-guided localization for pulmonary nodules (PNs) using either coil- or liquid material-based approaches. Relevant articles published as of July 2023 were identified in the Web of Science, PubMed, and Wanfang databases, and pooled analyses of relevant endpoints were then conducted. Six articles that enrolled 287 patients (341 PNs) and 247 patients (301 PNs) that had respectively undergone CT-guided localization procedures using coil- and liquid material-based approaches prior to video-assisted thoracic surgery (VATS) were included in this meta-analysis. The liquid material group exhibited a significantly higher pooled successful localization rate as compared to the coil group (<i>p</i> = 0.01), together with significantly lower pooled total complication rates (<i>p</i> = 0.0008) and pneumothorax rates (<i>p</i> = 0.01). Both groups exhibited similar rates of pulmonary hemorrhage (<i>p</i> = 0.44) and successful wedge resection (<i>p</i> = 0.26). Liquid-based localization was also associated with significant reductions in pooled localization and VATS procedure durations (<i>p</i> = 0.004 and 0.007). These data are consistent with CT-guided localization procedures performed using liquid materials being safer and more efficacious than coil-based localization in patients with PNs prior to VATS resection.
提供机构:
Taylor & Francis
创建时间:
2024-04-04
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

ChemBL

ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。

www.ebi.ac.uk 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录