five

X-ray diffraction studies of epoxy-based composites with various BiFeO3 particles|材料科学数据集|X射线衍射数据集

收藏
Mendeley Data2024-04-02 更新2024-06-28 收录
材料科学
X射线衍射
下载链接:
https://repod.icm.edu.pl/citation?persistentId=doi:10.18150/E2J0QD
下载链接
链接失效反馈
资源简介:
X-ray diffraction tests (D8 Advance, Bruker AXS) were performed on epoxy composites containing two BiFeO3 powders with different grain sizes - submicrometric (sBFO) and micrometric (mBFO). The tests were carried out under tensile and compression conditions. In addition, for tests under compression conditions, an analysis of residual stresses in all composites was performed, using the peak (514) of the R3c structure, characteristic of BiFeO3.XRD studies were performed on powder samples and composites using the D8 Advance diffractometer (Bruker AXS, Karlsruhe, Germany) with Cu-Kα cathode (λ=1.54 Å) operating at 40 kV voltage and 40 mA current. The scan rate was 0.30°/min with scanning step 0.01° in range of 10° to 140° 2Θ for powder, while for composites scan rate 2°/min with scanning step 0.01° was applied. Data collection was performed using LYNXEYE XE-T linear detector (Bruker AXS, Karlsruhe, Germany), operating in a modified high-resolution mode. The high threshold discriminator was maintained at 0.954 V level, while the lower threshold discriminator of detector was increased from 0.614 V up to 0.750 V, in order to minimize fluorescence, regarding the presence of iron ions in the BiFeO3 structure.Stress-XRD analysis was performed with use of iso-inclination mode of D8 Advance (Bruker AXS, Karlsruhe, Germany) based on (514) peak of BiFeO3 phase with the nominal position at 132.429° of 2θ pattern respectively, according to EN-15305 standard. For residual stress analysis, the following materials parameters were used: Poisson ratio 0.2695 and Young modulus 143.53 GPa4,5, which gives S1 = -1.878 ∙ 10-6 MPa and 1/S2 = 8.845 ∙ 10-6 MPa-1. The 11.6 MPa limit was used for a stress-free material. For stress analysis, the standard-fit was used in (514) peak position fitting. Applied stress mode was established as normal. For compressive tests, the DEBEN microtensile stage mounted at D8 Advance diffractometer with a 2kN crosshead was used, moving with a speed of 0.4 mm/min. Studies were performed up to 20 MPa applied stress, using scan rate 2°/min with scanning step 0.01°.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PartNet

我们介绍了PartNet: 一个一致的、大规模的三维对象数据集,用细粒度的、实例级的和分层的三维零件信息进行注释。我们的数据集包括573,585个零件实例,超过26,671个3D模型,涵盖24个对象类别。该数据集支持并充当许多任务的催化剂,例如形状分析,动态3D场景建模和仿真,可承受分析等。使用我们的数据集,我们建立了用于评估3D零件识别的三个基准任务: 细粒度语义分割,分层语义分割和实例分割。我们对四种最先进的3D深度学习算法进行了基准测试,用于细粒度语义分割,并对三种基线方法进行了基准测试。我们还提出了一种新颖的零件实例分割方法,并证明了其优于现有方法的性能。

OpenDataLab 收录

Other-Animals-10

该数据集包含103张图像,每张图像对应一个动物标签,标签类别包括熊、蜜蜂、甲虫等34种动物。数据集仅包含一个训练集,用于训练模型。

huggingface 收录

SIMBAD Astronomical Database

SIMBAD astronomical database is the world reference database for the identification of astronomical objects and provides basic data, cross-identifications, bibliography and measurements for astronomical objects outside the solar system. Using VizieR, the catalogue service for the CDS reference collection of astronomical catalogues and tables published in academic journals and the Aladin interactive software sky atlas for access, visualization and analysis of astronomical images, surveys, catalogues, databases and related data. Simbad bibliographic survey began in 1950 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system)

re3data.org 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

BDD100K

数据集推动了视觉的进步,但现有的驾驶数据集在视觉内容和支持任务方面缺乏研究,以研究自动驾驶的多任务学习。研究人员通常只能在一个数据集上研究一小组问题,而现实世界的计算机视觉应用程序需要执行各种复杂的任务。我们构建了最大的驾驶视频数据集 BDD100K,包含 10 万个视频和 10 个任务,以评估图像识别算法在自动驾驶方面的令人兴奋的进展。该数据集具有地理、环境和天气的多样性,这对于训练不太可能对新条件感到惊讶的模型很有用。基于这个多样化的数据集,我们为异构多任务学习建立了一个基准,并研究了如何一起解决这些任务。我们的实验表明,现有模型需要特殊的训练策略来执行此类异构任务。 BDD100K 为未来在这个重要场所的学习打开了大门。更多详细信息请参见数据集主页。

OpenDataLab 收录