Data and analysis underlying two user studies on acceptance and effect of computer-based perspective broadening support for appraisal training|计算机辅助训练数据集|用户研究数据集
收藏基于OFES数据计算台湾以东逐月位涡(1993-2017)
基于1993-2017年间OFES高分辨率模式数据集中的温度和盐度数据计算的台湾以东位势涡度逐月三维分布。所使用OFES数据为开源数据。
国家海洋科学数据中心 收录
中国近海台风路径集合数据集(1945-2024)
1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。
国家海洋科学数据中心 收录
开源公平性干预数据集
开源公平性干预数据集由乔治梅森大学计算机科学系的研究团队创建,包含62个开源公平性干预项目。该数据集旨在帮助研究人员和从业者更好地理解和使用公平性干预工具,以提高机器学习模型的公平性。数据集涵盖了广泛的公平性干预工具,包括工具、工具包、库和框架等。该数据集的创建过程包括从GitHub上搜索和筛选公平性干预项目,并分析其可用性、兼容性、算法覆盖范围、区分因素和机器学习生命周期支持等方面。该数据集的应用领域包括医疗保健、金融和教育等领域,旨在解决机器学习模型中的偏见问题,促进公平和道德的决策。
arXiv 收录
PU Dataset
德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。
github 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
