five

Data from: Dopamine disruption increases cleanerfish cooperative investment in novel client partners|动物行为学数据集|神经生物学数据集

收藏
DataONE2017-04-05 更新2024-06-26 收录
动物行为学
神经生物学
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Social familiarization is a process of gaining knowledge that results from direct or indirect participation in social events. Cooperative exchanges are thought to be conditional upon familiarity with others. Indeed, individuals seem to prefer to engage with those that have previously interacted with them, which are more accurate predictors of reward than novel partners. On the other hand, highly social animals do seek novelty. Truth is that the physiological bases underlying how familiarity and novelty may affect cooperative decision-making are still rather obscure. Here, we provide the first experimental evidence that the level of the dopaminergic influence in cooperative exchanges is constrained to mechanisms of social familiarization and novelty in a cleanerfish, Labroides dimidiatus. Cleaners were tested against familiar and novel Ctenochaetus striatus surgeonfish (a common client species) in laboratorial conditions, and were found to spend more time providing physical contact (also referred to as tactile stimulation) to familiar fish clients. Cleaners use tactile stimulation as a way to reduce the risk of a non-rewarding outcome, a behavioural response that is even more pronounced when blocking dopamine (DA) D1 receptors. We discovered that the influence of DA disruption on cleaners' provision of physical contact was dependent on the level of familiarity with its partner, being highly exacerbated whenever the client is novel, and unnoticed when dealing with a familiar one. Our findings demonstrate that DA mediation influences the valuation of partner stimuli and the enhancing investment in novel partners, mechanisms that are similar to other vertebrates, including humans.
创建时间:
2017-04-05
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

EcoInvent

EcoInvent是一个生命周期评估(LCA)数据库,包含了大量产品的环境影响数据。它提供了详细的产品生命周期数据,包括原材料提取、生产、使用和废弃处理等各个阶段的环境影响信息。

www.ecoinvent.org 收录

M4-SAR

M4-SAR是一个多分辨率、多极化、多场景、多源数据集,用于光学与合成孔径雷达(SAR)融合的目标检测。该数据集由南京理工大学PCA实验室、安徽大学ICSP教育部重点实验室和南开大学计算机科学学院共同构建,包含112,184对精确对齐的图像和近一百万个标注实例。数据集覆盖六个关键类别,并使用公开的光学和SAR数据,包括Sentinel-1和Sentinel-2卫星提供的数据。为了克服SAR标注的挑战,该研究提出了一种半监督的光学辅助标注策略,利用光学图像的语义丰富性来显著提高标注质量。M4-SAR数据集旨在解决现有光学和SAR数据集的局限性,为多源融合目标检测任务提供大规模、高质量、标准化的数据集,并推动相关研究的发展。

arXiv 收录

广州市平均工资情况

该数据集包含了广州市平均工资情况的相关统计数据,并按照国民经济行业、隶属关系、执行会计制度等分类依据展示为更多细分指标。

开放广东 收录