five

Data from: Dopamine disruption increases cleanerfish cooperative investment in novel client partners|动物行为学数据集|神经生物学数据集

收藏
DataONE2017-04-05 更新2024-06-26 收录
动物行为学
神经生物学
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Social familiarization is a process of gaining knowledge that results from direct or indirect participation in social events. Cooperative exchanges are thought to be conditional upon familiarity with others. Indeed, individuals seem to prefer to engage with those that have previously interacted with them, which are more accurate predictors of reward than novel partners. On the other hand, highly social animals do seek novelty. Truth is that the physiological bases underlying how familiarity and novelty may affect cooperative decision-making are still rather obscure. Here, we provide the first experimental evidence that the level of the dopaminergic influence in cooperative exchanges is constrained to mechanisms of social familiarization and novelty in a cleanerfish, Labroides dimidiatus. Cleaners were tested against familiar and novel Ctenochaetus striatus surgeonfish (a common client species) in laboratorial conditions, and were found to spend more time providing physical contact (also referred to as tactile stimulation) to familiar fish clients. Cleaners use tactile stimulation as a way to reduce the risk of a non-rewarding outcome, a behavioural response that is even more pronounced when blocking dopamine (DA) D1 receptors. We discovered that the influence of DA disruption on cleaners' provision of physical contact was dependent on the level of familiarity with its partner, being highly exacerbated whenever the client is novel, and unnoticed when dealing with a familiar one. Our findings demonstrate that DA mediation influences the valuation of partner stimuli and the enhancing investment in novel partners, mechanisms that are similar to other vertebrates, including humans.
创建时间:
2017-04-05
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录