World Income Inequality Database (WIID)|收入不平等数据集|全球经济数据集
收藏
- 世界收入不平等数据库(WIID)由芬兰图尔库大学首次发布,旨在收集和整理全球范围内的收入不平等数据。
- WIID进行了首次重大更新,增加了更多国家和地区的数据,并改进了数据收集和处理方法。
- WIID发布了第三版,进一步扩展了数据覆盖范围,包括了更多的历史数据和更详细的分类信息。
- WIID发布了第五版,引入了新的数据源和更先进的分析工具,提升了数据的质量和可靠性。
- 1The World Income Inequality Database (WIID): The Most Comprehensive Source of Global Inequality MeasuresUnited Nations University - World Institute for Development Economics Research (UNU-WIDER) · 2021年
- 2Global Inequality Dynamics: New Findings from WID.world and WIIDWorld Inequality Database (WID.world) · 2020年
- 3Income Inequality in the OECD over the Past Half Century: The Role of Wages, Capital Gains, and TaxesOrganisation for Economic Co-operation and Development (OECD) · 2019年
- 4The Rise of Income Inequality in the United States and the Role of Fiscal PolicyNational Bureau of Economic Research (NBER) · 2021年
- 5Income Inequality and Economic Growth: Evidence from a New DatasetElsevier · 2022年
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
WideIRSTD Dataset
WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。
github 收录
波士顿房价数据集
波士顿房价数据集是一个经典的机器学习数据集,通常用于回归任务,尤其是房价预测。下方文档中有所有字段顺序的描述。
阿里云天池 收录
AgiBot World
为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。
github 收录
GVJahnavi/Crops_set
该数据集包含图像和标签两个主要特征。图像特征的数据类型为图像,标签特征的数据类型为类标签,具体包括20种不同的植物病害和健康状态,如玉米的灰斑病、普通锈病、北方叶枯病,以及番茄的细菌性斑点病、早疫病、晚疫病等。数据集分为训练集和测试集,训练集包含25384个样本,测试集包含6346个样本。数据集的下载大小为514893426字节,总大小为474216412.07000005字节。
hugging_face 收录
