five

Rich maternal and paternal genetic diversity and divergent lineage composition in wild yak (Bos mutus)|遗传多样性数据集|野生牦牛数据集

收藏
Mendeley Data2024-06-25 更新2024-06-29 收录
遗传多样性
野生牦牛
下载链接:
https://tandf.figshare.com/articles/dataset/Rich_maternal_and_paternal_genetic_diversity_and_divergent_lineage_composition_in_wild_yak_i_Bos_mutus_i_/14068532/2
下载链接
链接失效反馈
资源简介:
Wild yak (Bos mutus) is a vulnerable bovine species on the Qinghai–Tibetan Plateau (QTP). So far, most studies on molecular genetic diversity of wild yak have focused on autosomal and mtDNA variations based on small number of samples. In this study, we analyzed 84 D-loop and 24 whole mitogenome sequences of wild yak to further comprehensively explore its maternal genetic diversity and lineage composition. Meanwhile, using six yak Y-specific polymorphic markers (i.e., SRY4, USP9Y, UTY19, AMELY3, OFD1Y10 and INRA189), we assessed the paternal genetic diversity and lineage composition based on eight wild yak. Our results showed that wild yak exhibited abundant maternal genetic diversity with haplotype diversities of 0.9621 ± 0.0078 and 0.9928 ± 0.0144 in the D-loop and whole mitogenome sequences, respectively. Maternal phylogenetic analysis of wild yak uncovered three defined lineages (mt-I, mt-II and mt-III). Similarly, profuse paternal genetic diversity was observed in wild yak with Y-haplotype diversity (Hd) at 0.8214 ± 0.1007. Two Y-haplogroups (Y1 and Y2) with four Y-haplotypes (yH1-yH4) were identified in paternal phylogenetic analysis, indicating wild yak to be of two paternal lineages. This study of genetic diversity and lineage composition of wild yak would provide useful information for the genetic resource conservation and utilization of this vulnerable wild species.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

高质量多领域客服对话数据集

高质量多领域客服对话数据集,包含了电子商务、金融服务、电信支持等多个领域,包含丰富的问答对。旨在提供多样化的客户服务场景下的自然语言交互样本。高质量多领域客服对话数据集在大模型领域的应用能够解决以下几个关键问题: 1)聊天机器人训练:通过使用丰富的对话数据,可以训练出更加自然、流畅且能理解复杂用户意图的聊天机器人。 2)智能客服助手:能够提升客服系统的自动化水平,有效解答常见问题,减少人工客服的工作负担,提高服务效率和客户满意度。 3)多轮对话系统开发:支持构建能够进行连贯、上下文相关的多轮对话系统,使得机器能够在对话中保持话题一致性,提供更个性化的交互体验。 4)智能推荐系统:利用对话数据中的用户偏好和行为模式,改进推荐算法,实现更精准的内容和服务推荐。 5)知识库构建:有助于自动或半自动地构建和维护企业或特定领域的知识图谱,为用户提供准确的信息查询服务。 6)语言模型预训练:可以作为预训练数据,帮助语言模型学习多样化的语言结构和表达方式,增强模型的语言理解和生成能力。

北京市数据知识产权 收录

TruckV2X

TruckV2X数据集是首个以卡车为中心的多模态和多代理协作感知数据集,旨在解决卡车在自动驾驶中面临的独特感知挑战。该数据集利用LiDAR和摄像头进行多模态感知,并包括拖拉机、拖车、CAV和RSU等多代理协作。数据集提供了64个场景,包括88,396帧LiDAR点云、一百万张相机图像和1.18百万个3D边界框注释。该数据集为开发具有增强遮挡处理能力的协作感知系统奠定了基础,并加速了多代理自动驾驶卡车系统的部署。

arXiv 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录