five

COCO2017, COCO2014, BDD100k, Visdrone, Hand|目标检测数据集|计算机视觉数据集

收藏
github2024-05-18 更新2024-05-31 收录
目标检测
计算机视觉
下载链接:
https://github.com/SpursLipu/YOLOv3v4-ModelCompression-MultidatasetTraining-Multibackbone
下载链接
链接失效反馈
资源简介:
该项目提供了多个主流目标检测数据集的训练方法,包括COCO2017、COCO2014、BDD100k、Visdrone和Hand等数据集。

This project provides training methodologies for several mainstream object detection datasets, including COCO2017, COCO2014, BDD100k, Visdrone, and Hand datasets.
创建时间:
2019-12-24
原始信息汇总

数据集概述

支持的数据集

本项目支持多个主流对象检测数据集,包括:

  • COCO2017
  • COCO2014
  • BDD100k
  • Visdrone
  • Hand

数据集下载与配置

COCO2017

  • 下载链接:COCO2017
  • 提取码:hjln

COCO2014

  • 下载链接:COCO2014
  • 提取码:rhqx

BDD100k

  • 下载链接:bdd100k
  • 提取码:8duw

Visdrone

  • 下载链接:visdrone
  • 提取码:dy4c

Dior

  • 下载链接:Dior
  • 提取码:vnuq

Oxfordhand

训练命令

COCO2017

bash python3 train.py --data data/coco2017.data --batch-size ... --weights weights/yolov3-608.weights -pt --cfg cfg/yolov3/yolov3.cfg --img-size ... --epochs ...

Dior

bash python3 train.py --data data/dior.data --batch-size ... --weights weights/yolov3-608.weights -pt --cfg cfg/yolov3/yolov3-onDIOR.cfg --img-size ... --epochs ...

BDD100k

bash python3 train.py --data data/bdd100k.data --batch-size ... --weights weights/yolov3-608.weights -pt --cfg cfg/yolov3/yolov3-bdd100k.cfg --img-size ... --epochs ...

Visdrone

bash python train.py --data data/visdrone.data --batch-size ... --weights weights/yolov3-608.weights -pt --cfg cfg/yolov3/yolov3-visdrone.cfg --img-size ... --epochs ...

Oxfordhand

bash python train.py --data data/oxfordhand.data --batch-size ... --weights weights/yolov3-608.weights -pt --cfg cfg/yolov3/yolov3-hand.cfg --img-size ... --epochs ...

数据集性能指标

数据集 YOLOv3-640 YOLOv4-640 YOLOv3-mobilenet-640
Dior 0.749 - -
bdd100k 0.543 - -
visdrone 0.311 0.383 0.348
AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集的构建方式主要基于多个主流目标检测数据集,包括COCO2017、COCO2014、BDD100k、Visdrone和Hand。这些数据集经过预处理,提供了适用于YOLOv3的配置文件、数据索引文件、类别文件以及通过K-means算法重新聚类的锚框大小。数据集的多样性和广泛性确保了模型训练的全面性和鲁棒性。
特点
该数据集的特点在于其多样性和广泛的应用场景。COCO系列数据集涵盖了日常生活中的多种物体,BDD100k则专注于驾驶场景,Visdrone数据集则通过无人机视角捕捉了城市和乡村的多种目标。Hand数据集则专注于手部检测,适用于人机交互等领域。这些数据集的结合使得模型能够在不同场景下进行有效的目标检测。
使用方法
使用该数据集时,用户可以通过提供的训练命令进行模型训练,使用`train.py`脚本指定数据集路径、配置文件、权重文件等参数。测试和检测则分别通过`test.py`和`detect.py`脚本进行。数据集的下载和解压需放置在`/data`目录下,用户可根据需求选择不同的数据集进行训练和测试。
背景与挑战
背景概述
COCO2017、COCO2014、BDD100k、Visdrone和Hand等数据集是当前主流的目标检测数据集,广泛应用于计算机视觉领域。这些数据集由多个研究机构和团队共同创建,旨在推动目标检测技术的发展。COCO数据集(包括COCO2017和COCO2014)由微软研究院发布,涵盖了丰富的图像和标注信息,主要用于图像分类、目标检测和语义分割任务。BDD100k数据集由加州大学伯克利分校发布,专注于自动驾驶场景,提供了多样化的天气和光照条件下的视频数据。Visdrone数据集由天津大学AISKYEYE团队收集,主要用于无人机视角下的目标检测任务,涵盖了多种环境和对象类型。Hand数据集则专注于手部检测,为手势识别和交互系统提供了基础数据。这些数据集的发布极大地推动了目标检测算法的研究与应用,尤其是在自动驾驶、无人机监控和人机交互等领域。
当前挑战
这些数据集在构建和应用过程中面临诸多挑战。首先,数据集的多样性和复杂性使得模型训练变得困难,尤其是在处理小目标、密集目标和不同光照条件下的检测任务时。其次,数据集的标注工作量大且复杂,尤其是对于多类别、多属性的目标检测任务,标注的准确性和一致性对模型性能有直接影响。此外,数据集的规模和计算资源的限制也使得模型训练和压缩变得具有挑战性。在模型压缩方面,如何在保持模型性能的同时减少计算量和参数量,是当前研究的重点。最后,不同数据集之间的兼容性和迁移学习问题也是实际应用中需要解决的难题,尤其是在多数据集联合训练时,如何平衡不同数据集的特性以提升模型的泛化能力,是一个亟待解决的问题。
常用场景
经典使用场景
在计算机视觉领域,COCO2017、COCO2014、BDD100k、Visdrone和Hand等数据集广泛应用于目标检测任务。这些数据集为YOLOv3等深度学习模型提供了丰富的训练资源,尤其是在多目标检测和复杂场景下的物体识别方面。通过这些数据集,研究人员可以训练出高效的目标检测模型,适用于自动驾驶、无人机监控、手势识别等多种应用场景。
解决学术问题
这些数据集解决了目标检测领域中的多个关键学术问题,如小目标检测、遮挡物体识别以及多类别物体的精确分类。通过提供多样化的场景和丰富的标注信息,这些数据集帮助研究人员开发出更加鲁棒和准确的目标检测算法,推动了计算机视觉领域的技术进步。
衍生相关工作
基于这些数据集,许多经典的工作得以展开,如YOLOv3的模型压缩与优化、多数据集联合训练等。此外,这些数据集还促进了模型压缩算法的发展,包括剪枝、量化和知识蒸馏等技术。这些技术不仅提升了模型的推理速度,还降低了计算资源的消耗,为实际应用中的部署提供了技术支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

HIT-UAV

HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。

github 收录

olympics.csv

该数据集包含不同国家参加奥运会的奖牌榜,数据来源于维基百科的历届奥运会奖牌榜。

github 收录

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录