The IXI Dataset|医学影像数据集|神经影像学数据集
收藏
- The IXI Dataset首次发表,由伦敦帝国学院的生物医学图像计算中心创建,旨在提供高质量的脑部MRI图像数据,以支持医学图像分析和机器学习研究。
- The IXI Dataset首次应用于医学图像分析领域,特别是在脑部结构和功能的研究中,为研究人员提供了丰富的数据资源。
- The IXI Dataset被广泛用于深度学习和人工智能算法的研究,特别是在脑部图像分割和分类任务中,显著提升了算法的性能。
- The IXI Dataset的数据量进一步扩展,增加了更多的MRI图像和相关临床数据,以支持更复杂的医学图像分析任务。
- The IXI Dataset成为国际医学图像分析竞赛的重要数据集之一,推动了全球范围内医学图像分析技术的发展。
- The IXI Dataset的数据质量和多样性得到了进一步提升,为新一代医学图像分析算法的发展提供了坚实的基础。
- 1The IXI Dataset: A Resource for Segmentation and RegistrationImperial College London · 2011年
- 2Deep Learning for Brain MRI Segmentation: State of the Art and Future DirectionsUniversity of California, Los Angeles · 2019年
- 3A Survey on Deep Learning in Medical Image AnalysisUniversity of Oxford · 2017年
- 4Brain Tumor Segmentation Using Convolutional Neural Networks in MRI ImagesUniversity of Pennsylvania · 2015年
- 5Automated Segmentation of MR Brain Images Using a Combination of Texture, Intensity, and Shape FeaturesUniversity of California, San Diego · 2014年
CE-CSL
CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。
arXiv 收录
YOLO Drone Detection Dataset
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。
github 收录
FAOSTAT Agricultural Data
FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。
www.fao.org 收录
Obstacle-dataset OD
该数据集用于十五种障碍物检测,包含VOC格式和YOLO训练的.txt文件,数据集中的图像来自VOC数据集、COCO数据集、TT100K数据集以及作者团队实地收集的图片。
github 收录
中国区域地面气象要素驱动数据集 v2.0(1951-2020)
中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。
国家青藏高原科学数据中心 收录