five

A cascade of dams affects fish spatial distributions and functional groups of local assemblages in a subtropical river|生态系统影响数据集|鱼类生态学数据集

收藏
DataCite Commons2022-05-30 更新2024-07-29 收录
生态系统影响
鱼类生态学
下载链接:
https://scielo.figshare.com/articles/dataset/A_cascade_of_dams_affects_fish_spatial_distributions_and_functional_groups_of_local_assemblages_in_a_subtropical_river/19920518/1
下载链接
链接失效反馈
资源简介:
Abstract Dams reduce the longitudinal connectivity of rivers and thereby disrupt fish migration and the spatial distribution of species, impacts that remain poorly studied for some Neotropical rivers from mega-diverse basins. We investigated the spatial distribution of fish species with different trophic and movement/reproductive/size characteristics to assess how functional groups have responded to a cascade of dams on the Uruguai River in southern Brazil. Fish abundance, biomass, and species composition were evaluated at eight locations along the longitudinal gradient. The fish assemblage in the upper stretch was mainly characterized by small and medium-sized species at higher trophic levels, whereas the sites located furthest downstream displayed more medium and large-sized species, including many carnivorous species. Species with high fecundity, seasonal migrants, and catfishes with internal fertilization were common in the river´s middle and lower reaches. Detritivorous species dominated areas distant from the dams. Overall, functional diversity of local fish assemblages was greater in lower reaches. The cascade of dams has impacted the distribution of functional groups of local fish assemblages of Uruguai River. The alteration of functional groups in upper reaches of the river has potential consequences for ecosystem processes and services, such as nutrient cycling and fisheries.
提供机构:
SciELO journals
创建时间:
2022-05-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

Movies Dataset

这个数据集包含电影的详细信息,包括电影名称、评分、类型、年份、发布日期、IMDb评分、投票数、导演、编剧、主演、制作国家、预算、总收入、制作公司和电影时长。

github 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录