NOAA ISD|气象数据数据集|气候研究数据集
收藏
- NOAA ISD(Integrated Surface Database)首次建立,作为全球气象观测数据的综合存储库。
- NOAA ISD开始整合来自多个国家和地区的气象数据,显著扩大了数据集的覆盖范围。
- NOAA ISD引入了自动化数据处理系统,提高了数据处理效率和准确性。
- NOAA ISD数据集首次公开发布,供全球科研人员和气象学家使用。
- NOAA ISD进行了重大更新,增加了对高分辨率气象数据的收集和存储能力。
- NOAA ISD数据集被广泛应用于气候变化研究、天气预报和灾害预警等多个领域。
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
MFE-ETP
MFE-ETP数据集由天津大学智能与计算学部创建,是一个针对具身任务规划的多模态基础模型综合评估基准。该数据集包含1184个高质量测试案例,覆盖100个具身任务,涉及对象理解、时空感知、任务理解和具身推理等多个能力维度。数据集的创建过程结合了从BEHAVIOR-100和VirtualHome平台收集的典型家庭任务数据,并通过人工标注和设计任务指令进行精细化处理。MFE-ETP数据集主要应用于提升多模态基础模型在具身人工智能领域的任务规划能力,旨在解决模型在复杂任务场景中的性能瓶颈问题。
arXiv 收录
Materials Project
材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)
OpenDataLab 收录
中国行政区划shp数据
中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。 中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。
CnOpenData 收录