five

Panama Vegetation Time Series Maps|植被监测数据集|森林砍伐数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
植被监测
森林砍伐
下载链接:
https://figshare.com/articles/dataset/Panama_Vegetation_Time_Series_Maps/14120603
下载链接
链接失效反馈
资源简介:
Panama Vegetation Time Series Maps for 1990-2016 with preliminary 2020 deforestation data. (the official 2020/21 map will be made available at the end of the 2021 mapping period). The following components are provided: "PVCTSYYYYvN" are 30m resolution raster maps resulting from compositing of 60-100 classified Landsat images for each time step, where YYYY is the nominal year of the compositing time period. (1991 includes images from 1987-1991. 2001 includes images from 1997-2001. 2006 includes images from 2002-2006. 2011 includes images from 2007-2011. 2016 includes images from 2012-2016.) Maps are all in GeoTiff format. "PVCTS_key.lyr" is a layer file that can be applied in ArcGIS for optimal display of categories. "PVCTSColorKey" provides more detailed description of categories and can be used to create a key in other software. More details about the land cover classes can be found in the "PVCTSv2_SupplementaryInfo" file. "PVCTSdeforest7cat_YYXX" are corresponding deforestation maps for activity occurring between years YY and XX. "Deforest7cat.lyr" provides the layer file that can be applied in ArcGIS for suggested viewing and "PVCTS_Deforestation_ColorKey" provides a description of the categories and can be used to create a key in other software. "PVCTSv2_SupplementaryInfo" provides information about the methods and data in the PVCTS composite and deforestation files. Accuracy assessments and error adjustments for the current PVCTS version are included in this document. "MaxAgeYYYY" are maximum-vegetation-age raster maps based on aggregation of clearing observations from all images in the USGS Landsat archive with cloud-cover <70%. These are 30m resolution rasters in GeoTiff format. Values indicate the maximum age that the vegetation can be in year YYYY based on the most recent clearing observation, or 99 if never observed to be cleared. A value of -1 means that the pixel was not observed to be cleared in year YYYY but it was observed to be cleared in year YYYY+1. A clearing observation occurs when the NBR (Normalized Burn Index) is below a season-based threshold (1000 to 3000) in a cloud-masked image. Many pixels are not observed each year due to cloud cover, thus these figures represent Maximum age (vegetation might be younger). The information in these layers has already been applied to the PVCTS maps, but not vice-versa (no other data is taken into account beyond NBR threshold). "metadata_spatial_ss" provides the spatial metadata for all GeoTiff files. Projection is in WGS_1984_UTM_Zone_17N.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

CMNEE(Chinese Military News Event Extraction dataset)

CMNEE(Chinese Military News Event Extraction dataset)是国防科技大学、东南大学和清华大学联合构建的一个大规模的、基于文档标注的开源中文军事新闻事件抽取数据集。该数据集包含17,000份文档和29,223个事件,所有事件均基于预定义的军事领域模式人工标注,包括8种事件类型和11种论元角色。数据集构建遵循两阶段多轮次标注策略,首先通过权威网站获取军事新闻文本并预处理,然后依据触发词字典进行预标注,经领域专家审核后形成事件模式。随后,通过人工分批、迭代标注并持续修正,直至满足既定质量标准。CMNEE作为首个专注于军事领域文档级事件抽取的数据集,对推动相关研究具有显著意义。

github 收录

fruits_weight

该数据集用于训练和改进YOLOv8-seg模型,用于水果成熟度的识别与分割。数据集包含12个类别,涵盖了从生鲜水果到成熟水果的不同阶段,具体类别包括:生芒果(Raw_Mango)、熟芒果(Ripe_Mango)、熟葡萄(ripe grape)、熟苹果(ripe_apple)、熟橙子(ripe_orange)、熟石榴(ripe_pomegranate)、半熟葡萄(semiripe grape)、半熟苹果(semiripe_apple)、未熟葡萄(unripe grape)、未熟苹果(unripe_apple)、未熟橙子(unripe_orange)和未熟石榴(unripe_pomegranate)。数据集的丰富性和多样性使其成为训练水果成熟度识别模型的理想选择。

github 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录