five

Archival Version|地理数据数据集|统计数据数据集

收藏
Mendeley Data2024-03-27 更新2024-06-28 收录
地理数据
统计数据
下载链接:
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/9688
下载链接
链接失效反馈
资源简介:
Datasets: DS0: Study-Level Files DS1: Alabama Main Data File DS2: Alaska Main Data File DS4: Arizona Main Data File DS5: Arkansas Main Data File DS6: California Main Data File DS8: Colorado Main Data File DS9: Connecticut Main Data File DS10: Delaware Main Data File DS11: District of Columbia Main Data File DS12: Florida Main Data File DS13: Georgia Main Data File DS15: Hawaii Main Data File DS16: Idaho Main Data File DS17: Illinois Main Data File DS18: Indiana Main Data File DS19: Iowa Main Data File DS20: Kansas Main Data File DS21: Kentucky Main Data File DS22: Louisiana Main Data File DS23: Maine Main Data File DS24: Maryland Main Data File DS25: Massachusetts Main Data File DS26: Michigan Main Data File DS27: Minnesota Main Data File DS28: Mississippi Main Data File DS29: Missouri Main Data File DS30: Montana Main Data File DS31: Nebraska Main Data File DS32: Nevada Main Data File DS33: New Hampshire Main Data File DS34: New Jersey Main Data File DS35: New Mexico Main Data File DS36: New York Main Data File DS37: North Carolina Main Data File DS38: North Dakota Main Data File DS39: Ohio Main Data File DS40: Oklahoma Main Data File DS41: Oregon Main Data File DS42: Pennsylvania Main Data File DS44: Rhode Island Main Data File DS45: South Carolina Main Data File DS46: South Dakota Main Data File DS47: Tennessee Main Data File DS48: Texas Main Data File DS49: Utah Main Data File DS50: Vermont Main Data File DS51: Virginia Main Data File DS53: Washington Main Data File DS54: West Virginia Main Data File DS55: Wisconsin Main Data File DS56: Wyoming Main Data File DS72: Puerto Rico Main Data File DS82: SPSS Data Definition Statements for Main Data Files DS83: SAS Data Definition Statements for Main Data Files DS84: SPSS Data Definition Statements for Geographic Header Files DS85: SAS Data Definition Statements for Geographic Header Files DS101: Alabama Geographic Header File DS102: Alaska Geographic Header File DS104: Arizona Geographic Header File DS105: Arkansas Geographic Header File DS106: California Geographic Header File DS108: Colorado Geographic Header File DS109: Connecticut Geographic Header File DS110: Delaware Geographic Header File DS111: District of Columbia Geographic Header File DS112: Florida Geographic Header File DS113: Georgia Geographic Header File DS115: Hawaii Geographic Header File DS116: Idaho Geographic Header File DS117: Illinois Geographic Header File DS118: Indiana Geographic Header File DS119: Iowa Geographic Header File DS120: Kansas Geographic Header File DS121: Kentucky Geographic Header File DS122: Louisiana Geographic Header File DS123: Maine Geographic Header File DS124: Maryland Geographic Header File DS125: Massachusetts Geographic Header File DS126: Michigan Geographic Header File DS127: Minnesota Geographic Header File DS128: Mississippi Geographic Header File DS129: Missouri Geographic Header File DS130: Montana Geographic Header File DS131: Nebraska Geographic Header File DS132: Nevada Geographic Header File DS133: New Hampshire Geographic Header File DS134: New Jersey Geographic Header File DS135: New Mexico Geographic Header File DS136: New York Geographic Header File DS137: North Carolina Geographic Header File DS138: North Dakota Geographic Header File DS139: Ohio Geographic Header File DS140: Oklahoma Geographic Header File DS141: Oregon Geographic Header File DS142: Pennsylvania Geographic Header File DS144: Rhode Island Geographic Header File DS145: South Carolina Geographic Header File DS146: South Dakota Geographic Header File DS147: Tennessee Geographic Header File DS148: Texas Geographic Header File DS149: Utah Geographic Header File DS150: Vermont Geographic Header File DS151: Virginia Geographic Header File DS153: Washington Geographic Header File DS154: West Virginia Geographic Header File DS155: Wisconsin Geographic Header File DS156: Wyoming Geographic Header File DS172: Puerto Rico Geographic Header File
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

CODrone

CODrone 是一个为无人机设计的全面定向目标检测数据集,它准确反映了真实世界条件。该数据集包含来自多个城市在不同光照条件下的广泛标注图像,增强了基准的逼真度。CODrone 包含超过 10,000 张高分辨率图像,捕获自五个城市的真实无人机飞行,涵盖了各种城市和工业环境,包括港口和码头。为了提高鲁棒性和泛化能力,它包括在正常光线、低光和夜间条件下相同场景的图像。我们采用了三种飞行高度和两种常用的相机角度,从而产生了六个不同的视角配置。所有图像都针对 12 个常见对象类别进行了定向边界框标注,总计超过 590,000 个标记实例。总体而言,这项工作构建了一个综合数据集和基准,用于城市无人机场景中的定向目标检测,旨在满足该领域的研究和实践应用需求。

arXiv 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

RadDet

RadDet是一个包含11种雷达类别的数据集,包括6种新的低概率干扰(LPI)多相码(P1, P2, P3, P4, Px, Zadoff-Chu)和一种新的宽带调频连续波(FMCW)。数据集覆盖500 MHz频段,包含40,000个雷达帧,分为训练集、验证集和测试集。数据集在两种不同的雷达环境中提供:稀疏数据集(RadDet-1T)和密集数据集(RadDet-9T)。

github 收录