five

Data from: Curvature-induced stiffening of a fish fin|鱼类生物力学数据集|生态学数据集

收藏
DataONE2017-06-07 更新2024-06-26 收录
鱼类生物力学
生态学
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
How fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays. An external force causes neighbouring rays to bend and splay apart, and thus stretches the membrane. This coupling between bending the rays and stretching the membrane underlies the increase in stiffness. Using three-dimensional reconstruction of a mackerel (Scomber japonicus) pectoral fin for illustration, we calculate the range of stiffnesses this fin is expected to span by changing curvature. The three-dimensional reconstruction shows that, even in its geometrically flat state, a functional curvature is embedded within the fin microstructure owing to the morphology of individual rays. As the ability of a propulsive surface to transmit force to the surrounding fluid is limited by its stiffness, the fin curvature controls the coupling between the fish and its surrounding fluid. Thereby, our results provide mechanical underpinnings and morphological predictions for the hypothesis that the spanned range of fin stiffnesses correlates with the behaviour and the ecological niche of the fish.
创建时间:
2017-06-07
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

N-MNIST (Neuromorphic-MNIST)

简要说明 Neuromorphic-MNIST (N-MNIST) 数据集是原始基于帧的 MNIST 数据集的尖峰版本。它由与原始 MNIST 数据集相同的 60 000 个训练样本和 10 000 个测试样本组成,并以与原始 MNIST 数据集(28x28 像素)相同的视觉比例捕获。 N-MNIST 数据集是通过将 ATIS 传感器安装在电动云台装置上并让传感器在 LCD 监视器上查看 MNIST 示例时移动来捕获的,如本视频所示。可以在下面的论文中找到对数据集及其创建方式的完整描述。如果您使用数据集,请引用本文。果园,G。科恩,G。贾亚万特,A。和 Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades”,《神经科学前沿》,第 9 卷,第 437 期,2015 年 10 月

OpenDataLab 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

PrimerBank

PrimerBank is a public resource for PCR primers. These primers are designed for gene expression detection or quantification (real-time PCR). PrimerBank contains over 306,800 primers covering most known human and mouse genes.

国家生物信息中心 收录

Electrical-Lines-Defect-Detection

该数据集是针对电力线路缺陷检测的,包含了由APEPDCL线路工人使用移动相机捕获的图片,并由Sampath Balaji团队整理。数据集以CC BY 4.0许可证发布,旨在促进开源合作、可重现性和人工智能的实践学习。数据集分为两个模块:目标检测和分类。目标检测模块遵循YOLOv12格式,分类模块由文件夹和CSV文件组成,都提供了训练、验证和测试数据集。

huggingface 收录

TILDA 400

Textile Texture Database (TILDA) for defect detection

kaggle 收录