five

TDRP-SA Instances|物流优化数据集|无人机路径规划数据集

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
物流优化
无人机路径规划
下载链接:
https://data.mendeley.com/datasets/cxc6p5x4ts
下载链接
链接失效反馈
资源简介:
We formally define the truck and drone routing problem with synchronization on arcs (TDRP-SA). Along truck routes, the locations where trucks can dispatch or retrieve drones, may be any nodes on arcs in the truck routes. At a location for a moving truck dispatching or retrieving drones, the arrival time of the truck, and the departure or arrival time of the drones affect each other, which is addressed here through the synchronization on arcs. An LRL (drone launch/retrieval location) that can be located at any node on arcs traveled by trucks, consists of a truck that keeps traveling on arcs. Each customer should be served exactly once. Customers are classified into two types; the first one is called the truck–drone customer (denoted as the TDC) and the other is called the drone customer (denoted as the DRC). Each truck–drone combination includes one truck carrying a predetermined number of drones. 1. Small-scale instances The depot in the VRPTW instance C101 is used as the depot of the TDRP-SA small-scale instance. Let nc denote the number of customer included. The nc customers are classified into TDCs and DRCs. Each truck carries two drones. The drone and truck capacity are 5 kg and 1000 kg, respectively. The maximum working time of each truck is 10 h, and the maximum flying time of one departure of each drone is 0.67 h. The average velocity of each truck and that of each drone are 60 km/h and 65 km/h, respectively. The variable cost of each truck is 0.8 Chinese Yuan/km, and the operating cost per departure of each drone is 15 Chinese Yuan. The penalty of a truck waiting for a unit of time at customer locations is estimated as 1. Each small-scale instance is denoted by C“nc”-1, C“nc”-2, or C“nc”-3. 2. Large-scale benchmark instances We modify the benchmark instances C101–C109, R101–R112, and RC101–RC108 by classifying customers into TDCs and DRCs. Each of the VRPTW benchmark instances is converted into three types of TDRP-SA test instances using a method of classifying the customers. We modify time windows of the benchmark instances C101–C109 with classified customers. If the model constraints cannot be ensured because of the modified time windows of some customers, the center of the time windows of these customers is adjusted as the arrival time of a vehicle that departs at the depot opening time. The drone and truck capacity are 60 and 1000, respectively. The maximum working time of each truck is 1000, and the maximum flying time of one takeoff for each drone is 40. The average velocity of each truck and that of each drone are 1 and 1.1, respectively. The variable cost of each truck is 1, and the operating cost per departure of each drone is 5. Each large-scale benchmark instance is denoted by “name of VRPTW benchmark instance”-1, “name of VRPTW benchmark instance”-2, or “name of VRPTW benchmark instance”-3.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Thyroid Disease Data

该数据集包含13个临床病理特征,旨在预测分化良好的甲状腺癌的复发。数据集收集了15年间的数据,每位患者至少被跟踪了10年。

github 收录

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录