five

Data from: Tips and nodes are complimentary not competing approaches to the calibration of molecular clocks|分子钟校准数据集|进化时间估计数据集

收藏
DataONE2016-03-10 更新2024-06-27 收录
分子钟校准
进化时间估计
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Molecular clock methodology provides the best means of establishing evolutionary timescales, the accuracy and precision of which remains reliant on calibration, traditionally based on fossil constraints on clade (node) ages. Tip-calibration has been developed to obviate undesirable aspects of node calibration, including the need for maximum age constraints that are invariably very difficult to justify. Instead, tip-calibration incorporates fossil species as dated tips alongside living relatives, potentially improving the accuracy and precision of divergence time estimates. We demonstrate that tip-calibration yields node calibrations that violate fossil evidence, contributing to unjustifiably young and ancient age estimates, less precise and (presumably) accurate than conventional node calibration. However, we go on to show that node and tip calibrations are complementary, producing meaningful age estimates, with node minima enforcing realistic ages and fossil tips interacting with node calibrations to objectively define maximum age constraints on clade ages. Together, tip and node calibration may yield evolutionary timescales that are better justified, more precise and accurate than either calibration strategy can achieve alone.
创建时间:
2016-03-10
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录

TCM-Tongue

TCM-Tongue是一个专门用于人工智能辅助中医舌诊的标准化舌像数据集,包含6719张在标准化条件下捕获的高质量图像,并标注了20种病理症状类别(平均每张图像有2.54个经过临床验证的标签,所有标签均由持有执照的中医执业医师验证)。数据集支持多种标注格式(COCO、TXT、XML),以方便广泛使用,并使用九种深度学习模型进行了基准测试,以展示其在人工智能开发中的实用性。该资源为推进可靠的中医计算工具提供了关键基础,填补了该领域的数据短缺,并通过标准化、高质量的诊断数据促进了人工智能在研究和临床实践中的整合。

arXiv 收录

LANDSLIDE DETECTION

该数据集专注于山体滑坡现象的识别与分类,旨在为改进YOLOv8模型提供高质量的训练数据。数据集包含1600幅图像,类别数量为1,具体类别为“LANDSLIDE”。数据集的构建考虑了山体滑坡的多样性与复杂性,确保模型在实际应用中具备良好的泛化能力。

github 收录

XS-Video

XS-Video数据集是由中国科学院自动化研究所MAIS实验室提出的一个大规模现实世界短视频传播数据集。该数据集收集了来自中国五大平台(抖音、快手、西瓜视频、今日头条、哔哩哔哩)的117720个短视频,包含381926个样本和535个话题,覆盖了从发布后的互动信息,如观看、点赞、分享、收藏、粉丝和评论等。数据集通过跨平台指标对齐方法,对视频的长期传播影响力进行评分,分为0到9级,旨在为短视频传播研究提供全面的互动信息和内容特征。

arXiv 收录