five

Data from: Early life nutritional quality effects on adult memory retention in a parasitic wasp|寄生生物学数据集|营养与记忆数据集

收藏
DataONE2017-02-28 更新2024-06-26 收录
寄生生物学
营养与记忆
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Nutritional quality during early life can affect learning ability and memory retention of animals. Here we studied the effect of resource quality gained during larval development on the learning ability and memory retention of 2 sympatric strains of similar genetic background of the parasitoid Trichogramma brassicae: one uninfected and one infected by Wolbachia. Wolbachia is a common arthropod parasite/mutualistic symbiont with a range of known effects on host fitness. Here we studied, for the first time, the interaction between resource quality and Wolbachia infection on memory retention and resource acquisition. Memory retention of uninfected wasps was significantly longer when reared on high quality hosts when compared to low quality hosts. Furthermore, uninfected wasps emerging from high quality hosts showed higher values of protein and triglyceride than those emerging from low quality hosts. In contrast, the memory retention for infected wasps was the same irrespective of host quality, although retention was significantly lower than uninfected wasps. No significant effect of host quality on capital resource amount of infected wasps was observed, and infected wasps displayed a lower amount of protein and triglyceride than uninfected wasps when reared on high quality hosts. This study suggests that the nutritional quality of the embryonic period can affect memory retention of adult wasps not infected by Wolbachia. However, by manipulating the host’s obtained capital resource amount, Wolbachia could enable exploitation of the maximum available resources from a range of hosts to acquire suitable performance in complex environments.
创建时间:
2017-02-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录

中国农村教育发展报告

该数据集包含了中国农村教育发展的相关数据,涵盖了教育资源分布、教育质量、学生表现等多个方面的信息。

www.moe.gov.cn 收录

UA-DETRAC

UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking

kaggle 收录