five

Data from: Early life nutritional quality effects on adult memory retention in a parasitic wasp|寄生生物学数据集|营养与记忆数据集

收藏
DataONE2017-02-28 更新2024-06-26 收录
寄生生物学
营养与记忆
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Nutritional quality during early life can affect learning ability and memory retention of animals. Here we studied the effect of resource quality gained during larval development on the learning ability and memory retention of 2 sympatric strains of similar genetic background of the parasitoid Trichogramma brassicae: one uninfected and one infected by Wolbachia. Wolbachia is a common arthropod parasite/mutualistic symbiont with a range of known effects on host fitness. Here we studied, for the first time, the interaction between resource quality and Wolbachia infection on memory retention and resource acquisition. Memory retention of uninfected wasps was significantly longer when reared on high quality hosts when compared to low quality hosts. Furthermore, uninfected wasps emerging from high quality hosts showed higher values of protein and triglyceride than those emerging from low quality hosts. In contrast, the memory retention for infected wasps was the same irrespective of host quality, although retention was significantly lower than uninfected wasps. No significant effect of host quality on capital resource amount of infected wasps was observed, and infected wasps displayed a lower amount of protein and triglyceride than uninfected wasps when reared on high quality hosts. This study suggests that the nutritional quality of the embryonic period can affect memory retention of adult wasps not infected by Wolbachia. However, by manipulating the host’s obtained capital resource amount, Wolbachia could enable exploitation of the maximum available resources from a range of hosts to acquire suitable performance in complex environments.
创建时间:
2017-02-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

中国行政区划shp数据

   中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。   中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。

CnOpenData 收录

CliMedBench

CliMedBench是一个大规模的中文医疗大语言模型评估基准,由华东师范大学等机构创建。该数据集包含33,735个问题,涵盖14个核心临床场景,主要来源于顶级三级医院的真实电子健康记录和考试练习。数据集的创建过程包括专家指导的数据选择和多轮质量控制,确保数据的真实性和可靠性。CliMedBench旨在评估和提升医疗大语言模型在临床决策支持、诊断和治疗建议等方面的能力,解决医疗领域中模型性能评估的不足问题。

arXiv 收录

ai-hub2

本项目所使用的数据集名为“ai-hub2”,其主要目的是为改进YOLOv11的工地工程车辆装置检测系统提供高质量的训练数据。该数据集包含五个类别,分别是:钻孔机(boring_machine)、混凝土车(concrete_truck)、起重机(crane)、自卸车(dump_truck)和挖掘机(excavator)。这些类别涵盖了工地上常见的重型机械设备,能够有效支持车辆检测系统在复杂环境中的应用。

github 收录

实时天气预报-全国天气预报查询-天气查询-天气api接口-天气预警-天气预报查询-天气预报

天气查询API提供全球城市精准天气数据,支持实时查询及多日预报,返回包括城市、国家、地区、日期、最高/最低温度、天气描述、湿度、风速、风向和降水概率等详细气象信息,采用JSON结构化数据格式,响应快速稳定,适用于各类天气应用、出行规划和数据分析场景。

腾讯云市场 收录