five

Data from: Early life nutritional quality effects on adult memory retention in a parasitic wasp|寄生生物学数据集|营养与记忆数据集

收藏
DataONE2017-02-28 更新2024-06-26 收录
寄生生物学
营养与记忆
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Nutritional quality during early life can affect learning ability and memory retention of animals. Here we studied the effect of resource quality gained during larval development on the learning ability and memory retention of 2 sympatric strains of similar genetic background of the parasitoid Trichogramma brassicae: one uninfected and one infected by Wolbachia. Wolbachia is a common arthropod parasite/mutualistic symbiont with a range of known effects on host fitness. Here we studied, for the first time, the interaction between resource quality and Wolbachia infection on memory retention and resource acquisition. Memory retention of uninfected wasps was significantly longer when reared on high quality hosts when compared to low quality hosts. Furthermore, uninfected wasps emerging from high quality hosts showed higher values of protein and triglyceride than those emerging from low quality hosts. In contrast, the memory retention for infected wasps was the same irrespective of host quality, although retention was significantly lower than uninfected wasps. No significant effect of host quality on capital resource amount of infected wasps was observed, and infected wasps displayed a lower amount of protein and triglyceride than uninfected wasps when reared on high quality hosts. This study suggests that the nutritional quality of the embryonic period can affect memory retention of adult wasps not infected by Wolbachia. However, by manipulating the host’s obtained capital resource amount, Wolbachia could enable exploitation of the maximum available resources from a range of hosts to acquire suitable performance in complex environments.
创建时间:
2017-02-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

O*NET

O*NET(Occupational Information Network)是一个综合性的职业信息数据库,提供了关于各种职业的详细描述,包括技能要求、工作活动、知识领域、工作环境等。该数据集被广泛用于职业分析、教育和劳动力市场研究。

www.onetonline.org 收录

中国沿海地面沉降数据数据库(2015,2020)

数据来源https://doi.org/10.1038/s41467-022-34525-w。由于缺少详细公开的中国沿海地区地面升降数据,本数据集是通过系统的文献综述,对中国沿海地区的地面升降进行了详细整理,建立了中国沿海城市地面沉降数据库,包括中国沿海城市不同时段沉降速率以及测量手段。所用文献主要来源于CNKI文献数据库、Web of Science,以及灰色文献(Grey literature),如报告、规划等。该数据可用于相对海平面变化研究,沿海极值水位和海岸洪水危险性研究,为沿海地面沉降防控以及沿海适应性措施规划等提供参考和依据。

国家青藏高原科学数据中心 收录

PlantVillage

在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。

OpenDataLab 收录

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录