five

松花江流域经济发展情景模拟数据集|区域经济发展数据集|经济预测数据集

收藏
地球大数据科学工程2024-04-21 收录
区域经济发展
经济预测
下载链接:
https://data.casearth.cn/sdo/detail/653a5b57819aec42f0f38fa2
下载链接
链接失效反馈
资源简介:
反映经济发展水平,根据2014年至2018年松花江流域内各县域单元的粮食产量、农业机械总动力、总人口数、地区生产总值、农林牧渔业总产值五类数据,主要利用二次指数平滑法估算2020年各县域单元对应于五类数据的预测数值。
提供机构:
中科院东北地理所
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

FRED (Federal Reserve Economic Data)

FRED(Federal Reserve Economic Data)是一个由美国联邦储备银行圣路易斯分行维护的经济数据库,提供超过80万种经济指标数据,包括国内生产总值(GDP)、失业率、通货膨胀率、利率等。数据涵盖了美国和国际的经济、金融和社会指标,时间跨度从1776年至今。

fred.stlouisfed.org 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录

Materials Project 在线材料数据库

Materials Project 是一个由伯克利加州大学和劳伦斯伯克利国家实验室于 2011 年共同发起的大型开放式在线材料数据库。这个项目的目标是利用高通量第一性原理计算,为超过百万种无机材料提供全面的性能数据、结构信息和计算模拟结果,以此加速新材料的发现和创新过程。数据库中的数据不仅包括晶体结构和能量特性,还涵盖了电子结构和热力学性质等详尽信息,为研究人员提供了丰富的材料数据资源。相关论文成果为「Commentary: The Materials Project: A materials genome approach to accelerating materials innovation」。

超神经 收录

新型人类活动识别数据集

该数据集由都灵理工大学和马尔默大学合作创建,包含7类活动,利用60 GHz毫米波FMCW雷达在真实环境中收集。数据集旨在支持机器学习和深度学习模型在人类活动识别方面的研究,特别是对雷达特征图的时空结构进行保留的多维特征向量。数据集将公开,以推动FMCW雷达在智能环境监测中的应用研究。

arXiv 收录

Chinese Tea Sprout Dataset

On the basis of autonomous mobile tea picking robot, aiming at the shortcomings of traditional tea bud identification methods such as slow speed, low accuracy and poor adaptability, as well as people's demand for high-quality tea, the research and experiment of tea bud quality classification recognition based on YOLOv5 were carried out. Through the construction of the autonomous mobile tea picking robot visual recognition system, the data set was constructed, which mainly included tea image acquisition, enhancement and annotation. YOLOv5 and SSD target detection algorithms were used to conduct model training experiments, and the experimental data was analyzed. The experimental results show that the average accuracy of YOLOv5 target detection algorithm is high.The analysis of experimental data shows that the YOLOv5 target detection algorithm has a good effect on classification identification of tea buds, which can provide technical support and theoretical guidance for classification identification of tea buds and intelligent picking.

Mendeley Data 收录