five

Data from: Relationship type affects the reliability of dispersal distance estimated using pedigree inferences in partially sampled populations: a case study involving invasive American mink in Scotland|生态学数据集|谱系分析数据集

收藏
DataONE2017-04-21 更新2024-06-26 收录
生态学
谱系分析
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Estimating dispersal - a key parameter for population ecology and management - is notoriously difficult. The use of pedigree assignments, aided by likelihood-based softwares, has become popular to estimate dispersal rate and distance. However, the partial sampling of populations may produce false assignments. Further, it is unknown how the accuracy of assignment is affected by the genealogical relationships of individuals and is reflected by software-derived assignment probabilities. Inspired by a project managing invasive American mink (Neovison vison), we estimated individual dispersal distances using inferred pairwise relationships of culled individuals. Additionally, we simulated scenarios to investigate the accuracy of pairwise inferences. Estimates of dispersal distance varied greatly when derived from different inferred pairwise relationships, with mother-offspring relationship being the shortest (average = 21 km) and the most accurate. Pairs assigned as maternal half-siblings were inaccurate, with 64-97% falsely assigned, implying that estimates for these relationships in the wild population were unreliable. The false assignment rate was unrelated to the software-derived assignment probabilities at high dispersal rates. Assignments were more accurate when the inferred parents were older and immigrants and when dispersal rates between subpopulations were low (1 and 2%). Using 30 instead of 15 loci increased pairwise reliability, but half-sibling assignments were still inaccurate (> 59% falsely assigned). The most reliable approach when using inferred pairwise relationships in polygamous species would be not to use half-sibling relationship types. Our simulation approach provides guidance for the application of pedigree inferences under partial sampling and is applicable to other systems where pedigree assignments are used for ecological inference.
创建时间:
2017-04-21
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

Data_on_Data_Analysts

我们正在探索数据分析师职位的就业市场趋势:需求技能、薪资变化和招聘模式。该数据集汇编了美国数据分析师职位的招聘信息,直接来源于Google的职位搜索结果。数据收集始于2022年11月4日,并持续增长,每天新增约100个职位信息,提供了当前就业市场的持续更新快照。

github 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

MOOCs Dataset

该数据集包含了大规模开放在线课程(MOOCs)的相关数据,包括课程信息、用户行为、学习进度等。数据主要用于研究在线教育的行为模式和学习效果。

www.kaggle.com 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录