five

Data from: Lack of spatial structure for phenotypic and genetic variation despite high self-fertilization in Aquilegia canadensis (Ranunculaceae)|植物遗传学数据集|空间遗传结构数据集

收藏
DataONE2018-01-30 更新2024-06-25 收录
植物遗传学
空间遗传结构
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
By reducing genetically effective population size and gene flow, self-fertilization should lead to strong spatial genetic structure (SGS). Although the short-lived plant Aquilegia canadensis produces large, complex, nectar-rich flowers, 75% of seed, on average, are self-fertilized. Previous experimental results are consistent with the fine-scale SGS expected in selfing populations. In contrast, key floral traits show no evidence of SGS, despite a significant genetic basis to phenotypic variation within populations. In this study, we attempt to resolve these contradictory results by hierarchically sampling plants from two plots nested within each of seven rock outcrops distributed over several km, and comparing the spatial pattern of phenotypic variation in four floral traits with neutral genetic variation at 10 microsatellite loci. For both floral and microsatellite variation, we detected only weak hierarchical structuring and no isolation by distance. The spatial pattern of variation in floral traits was on par with microsatellite polymorphisms. These results suggest regular long-distance gene flow via pollen. At much finer spatial scales within plots, estimates of relatedness were higher (albeit very low) between nearest neighbours than random plants, and declined with increasing distance between neighbours, consistent with highly localized seed dispersal. High selfing should yield SGS, but strong inbreeding depression in A. canadensis likely erodes SGS so that reproductive plants exhibit weak structure typical of outcrossers, especially given that outcrossing and consequent gene flow in this species are mediated by strong-flying hummingbirds and bumble bees.
创建时间:
2018-01-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CBIS-DDSM

该数据集用于训练乳腺癌分类器或分割模型,包含3103张乳腺X光片,其中465张有多个异常。数据集分为训练集和测试集,还包括3568张裁剪的乳腺X光片和对应的掩码。

github 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

CMACD

这是一个基于社交媒体用户的多标签中文情感计算数据集,整合了用户的性格特质与六种情感及微情感,每种情感都标注了强度级别。数据集旨在推进机器对复杂人类情感的识别,并为心理学、教育、市场营销、金融和政治等领域的研究提供数据支持。

github 收录

中国近海台风路径集合数据集(1945-2023)

1945-2023年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。注:时间为北京时间。

国家海洋科学数据中心 收录