five

yzhuang/autotree_automl_pol_gosdt_l256_d3_sd0

收藏
hugging_face2023-08-31 更新2024-03-04 收录
下载链接:
https://hf-mirror.com/datasets/yzhuang/autotree_automl_pol_gosdt_l256_d3_sd0
下载链接
链接失效反馈
资源简介:
--- dataset_info: features: - name: id dtype: int64 - name: input_x sequence: sequence: int64 - name: input_y sequence: sequence: float32 - name: rtg sequence: float64 - name: status sequence: sequence: float32 - name: split_threshold sequence: sequence: int64 - name: split_dimension sequence: int64 splits: - name: train num_bytes: 6664800000 num_examples: 100000 - name: validation num_bytes: 666480000 num_examples: 10000 download_size: 479767259 dataset_size: 7331280000 --- # Dataset Card for "autotree_automl_pol_gosdt_l256_d3_sd0" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
提供机构:
yzhuang
原始信息汇总

数据集概述

数据集信息

  • 特征列表
    • id:类型为 int64
    • input_x:序列类型,内部类型为 int64
    • input_y:序列类型,内部类型为 float32
    • rtg:类型为 float64
    • status:序列类型,内部类型为 float32
    • split_threshold:序列类型,内部类型为 int64
    • split_dimension:类型为 int64

数据分割

  • 训练集
    • 字节数:6664800000
    • 样本数:100000
  • 验证集
    • 字节数:666480000
    • 样本数:10000

数据集大小

  • 下载大小:479767259 字节
  • 数据集总大小:7331280000 字节
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

维基百科(wiki2019zh)

维基百科json版包含104万个词条,可作为通用中文语料,用于预训练的语料或构建词向量,也可用于构建知识问答。

github 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录