five

TimelyEventsBenchmark/TiEBe

收藏
hugging_face2025-01-15 更新2025-04-26 收录
下载链接:
https://hf-mirror.com/datasets/TimelyEventsBenchmark/TiEBe
下载链接
链接失效反馈
资源简介:
--- language: - en dataset_info: features: - name: year dtype: string - name: month dtype: string - name: event_desc dtype: string - name: text dtype: string - name: question dtype: string - name: answer dtype: string splits: - name: world num_bytes: 43850273 num_examples: 4472 - name: eua num_bytes: 26057335 num_examples: 2945 - name: brazil num_bytes: 19187973 num_examples: 1680 - name: france num_bytes: 5180668 num_examples: 634 - name: portugal num_bytes: 4660386 num_examples: 656 - name: china num_bytes: 5018316 num_examples: 849 download_size: 28467887 dataset_size: 103954951 configs: - config_name: default data_files: - split: world path: data/world-* - split: eua path: data/eua-* - split: brazil path: data/brazil-* - split: france path: data/france-* - split: portugal path: data/portugal-* - split: china path: data/china-* --- # Dataset Card for TiEBe ## Dataset Summary **TiEBe (Timely Events Benchmark)** is a dataset designed to assess the factual recall and regional knowledge representation of large language models (LLMs) concerning significant global and regional events. It contains over 11,000 question-answer pairs derived from retrospective Wikipedia pages and their references, spanning six geographic regions (World, USA, Brazil, China, Portugal, and France) and covering the years 2015–2024. TiEBe supports the evaluation of LLMs in two critical areas: geographical disparities in knowledge and continual learning of time-sensitive information. ## Supported Tasks - **Task:** Factual Question Answering - Input: Question related to a specific event. - Output: Model-generated answer. ## Languages Questions and answers are provided in **English** to ensure consistency and comparability across regions and models, even though the source documents may be in other languages. ## Dataset Structure ### Data Fields - **Region:** The geographic focus of the event (e.g., World, USA, Brazil, etc.). - **Year:** The year of the event (as extracted from Wikipedia). - **Event Description:** A brief summary of the event (as extracted from Wikipedia). - **Question:** A question designed to assess factual recall of the event. - **Answer:** The correct answer to the question. ### Data Splits The dataset does not include predefined splits. Users can define their own train/test/validation splits as required. ## Dataset Creation ### Source Data - **Event Sources:** Wikipedia retrospective pages (2015–2024) for five countries and global events. - **References:** Citation links from Wikipedia pages, typically journalistic sources. ### Data Generation 1. **Event Extraction:** Extracted notable events from retrospective pages and references. 2. **QA Generation:** Generated question-answer pairs using GPT-4 with a standardized prompt to ensure relevance and clarity. ## Key Features - Covers a wide temporal range (2015–2024) for studying the evolution of model knowledge. - Includes events from multiple regions, highlighting geographical disparities. ## Usage ### Example ```python from datasets import load_dataset # Load the TiEBe dataset dataset = load_dataset("TimelyEventsBenchmark/TiEBe", split="world") print(dataset[0]) # { # "year": "2019", # "month": "02", # "event_desc": "U.S. President Donald Trump confirms that the U.S. will leave the Intermediate-Range Nuclear....", # "text": "INF nuclear treaty: Russia follows US in suspending pact...", # "question": "What action did the United States take regarding the...", # "answer": "In February 2019, the United States formally announced...", # } ``` ## Citation paper coming soon
提供机构:
TimelyEventsBenchmark
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

日食计算器

此日食计算器能够查询公元前3000至后3000年范围内的日食信息,生成每次日食的覆盖区、中心区范围数据,展示日食带的地图;并可根据用户在地图上点击的坐标在线计算该地日食各阶段时间、食分等观测信息。

国家天文科学数据中心 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

Oxford 102 Flowers

牛津102花卉数据集是一个主要用于图像分类的花卉集合数据集,分为102个类别,共102种花卉,其中每个类别包含40到258幅图像。 该数据集由牛津大学工程科学系2008年在相关论文 “大量类别上的自动花分类” 中发布

OpenDataLab 收录