five

DroneSplat Dataset|无人机图像处理数据集|三维场景重建数据集

收藏
arXiv2025-03-21 更新2025-03-25 收录
无人机图像处理
三维场景重建
下载链接:
https://bityia.github.io/DroneSplat/
下载链接
链接失效反馈
资源简介:
DroneSplat数据集是由北京理工大学和杭州电子科技大学提供的,包含24个由无人机捕获的序列,涵盖动态和静态场景。该数据集用于评估 DroneSplat 方法在野外的三维重建性能,包含多种动态干扰物,旨在解决无人机图像中动态干扰物对静态场景重建的影响问题。
提供机构:
北京理工大学, 杭州电子科技大学
创建时间:
2025-03-21
AI搜集汇总
数据集介绍
main_image_url
构建方式
DroneSplat数据集通过无人机在野外环境中采集图像构建而成,涵盖动态与静态场景。数据采集采用DJI Mavic Pro 3无人机,图像分辨率包括1920×1080和3840×2160两种规格。动态场景根据动态干扰物的数量分为低动态、中动态和高动态三个等级,确保数据集的多样性和挑战性。此外,测试图像仅包含静态元素,以消除评估过程中的歧义。
特点
DroneSplat数据集以其丰富的场景多样性和高质量的图像采集著称。动态场景中包含多种移动物体,如车辆、行人等,且根据动态干扰物的数量分为不同等级,为算法鲁棒性评估提供了全面基准。静态场景则专注于几何结构的精确重建,尤其在视角受限的条件下。数据集的设计充分考虑了实际应用中的挑战,如动态干扰物的消除和稀疏视角下的几何重建。
使用方法
DroneSplat数据集适用于3D重建算法的训练与评估,尤其在动态场景处理和稀疏视角重建方面表现突出。用户可通过加载数据集中的图像序列,结合提供的相机参数,进行3D高斯泼溅(3D Gaussian Splatting)或其他辐射场方法的训练。数据集的动态场景测试集可用于验证算法在消除动态干扰物方面的性能,而静态场景测试集则适用于评估算法在视角受限条件下的几何重建能力。
背景与挑战
背景概述
DroneSplat数据集由北京理工大学和杭州电子科技大学的研究团队于2025年提出,旨在解决无人机在复杂野外环境中进行三维重建时面临的核心挑战。随着无人机在文化遗产保护、地质调查和城市测绘等领域的广泛应用,如何从动态干扰物众多的野外场景中实现鲁棒的三维重建成为关键科学问题。该数据集基于3D高斯泼溅技术(3D Gaussian Splatting),通过融合局部-全局分割启发式方法与统计策略,显著提升了动态干扰物的识别与消除能力,同时采用体素引导优化策略有效解决了视角稀疏条件下的几何重建难题。
当前挑战
该数据集主要应对两大挑战:在领域问题层面,传统辐射场方法基于静态场景假设,难以处理无人机影像中普遍存在的动态干扰物(如行驶车辆、行人等),且有限视角导致场景几何重建不准确;在构建过程层面,数据集采集面临动态干扰物像素级标注困难、多视角影像对齐精度不足等技术难题。具体表现为:动态物体与静态物体的语义混淆问题、小尺寸动态目标的漏检问题、以及稀疏视角下三维几何信息的欠拟合问题。这些挑战使得现有方法在真实野外场景中的重建质量显著下降。
常用场景
经典使用场景
在无人机航拍图像的三维重建领域,DroneSplat数据集通过其独特的3D高斯泼溅技术,为复杂动态场景下的静态重建提供了高效解决方案。该数据集特别适用于处理包含移动车辆、行人等动态干扰物的城市场景,能够精准分离动态元素并重建静态背景的三维几何结构。其多视角立体预测与体素引导优化策略,使得在有限视角约束下仍能保持重建精度,为文化遗产数字化、地质勘探等需要高保真三维模型的领域提供了可靠数据支持。
解决学术问题
该数据集有效解决了动态场景三维重建中的关键学术难题:通过自适应局部-全局掩码技术,突破了传统方法对预定义动态类别的依赖,实现了对任意动态干扰物的精准识别;针对无人机影像视角稀疏的特性,创新性地融合多视角立体几何先验与高斯泼溅优化,解决了有限视角下重建几何失真的问题。这些突破使得在非受控野外环境中获得高质量静态场景重建成为可能,推动了计算机视觉领域对动态干扰鲁棒性研究的深度发展。
衍生相关工作
该数据集催生了多个创新性研究方向:NeRF-HuGS通过启发式分割改进动态物体处理,WildGaussians探索了野外环境下的高斯泼溅优化,InstantSplat则开创了基于多视角立体的快速初始化范式。相关衍生工作集中在三个维度:动态干扰物的语义无关识别、稀疏视角下的几何先验融合,以及基于体素约束的优化策略,这些研究共同推动了无人机三维重建技术向更高效、更鲁棒的方向发展。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录

ChemBL

ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。

www.ebi.ac.uk 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

威廉王岛—全球变化数据大百科辞条

威廉王岛(King William Island)位于北美洲,北极圈内,属于加拿大北极群岛。它位于维多利亚岛和布西亚半岛之间,距离维多利亚岛85 km;北面距离威尔士亲王岛155 km;南面隔斯托里斯海峡和辛普森海峡与北美洲大陆(阿德莱德半岛)相望,最近处只有3.3 km。威廉王岛于1830年被指挥官詹姆斯.罗斯(James Ross)发现,以当时在位的英国君主威廉四世的名字命名。行政区划上,威廉王岛隶属于加拿大努纳武特(Nunavut)地区。它的地理位置为:69&deg54′22″N - 68&deg27′12″N,99&deg32′48″W - 95&deg09′25″W。威廉王岛总面积13259.59 km&sup2,海岸线总长1555.35 km。岛屿地势平坦,表面散布着无数的小湖。位于岛屿东南侧的约阿港(Gjoa Haven)是岛上最主要的居民点。在约阿港东北,有一机场。该数据集是基于Google Earth遥感影像全球多尺度海陆(岛)岸线数据集(2015),结合加拿大相关地图完成。数据集由24个数据文件组成,以.kmz和.shp数据格式存储,数据量2.98 MB(压缩成3个数据文件,数据量2.06 MB)。

国家对地观测科学数据中心 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录