five

ChinaTravel|旅行规划数据集|数据集评估数据集

收藏
arXiv2024-12-20 更新2024-12-20 收录
旅行规划
数据集评估
下载链接:
https://www.lamda.nju.edu.cn/shaojj/chinatravel
下载链接
链接失效反馈
资源简介:
ChinaTravel是由南京大学国家重点实验室开发的一个真实世界基准数据集,专门用于评估语言代理在中国旅行规划中的应用。该数据集涵盖了中国10个最受欢迎城市的旅行信息,包括720个航班和5770趟列车,以及3413个景点、4655家餐厅和4124家酒店的详细信息。数据集通过问卷调查收集用户需求,并设计了一个可扩展的领域特定语言来支持自动评估。ChinaTravel旨在解决复杂的真实世界旅行规划问题,特别是在多兴趣点行程安排和用户偏好满足方面,为语言代理在旅行规划中的应用提供了重要的测试平台。
提供机构:
南京大学
创建时间:
2024-12-18
原始信息汇总

ChinaTravel: A Real-World Benchmark for Language Agents in Chinese Travel Planning

数据集概述

  • 名称: ChinaTravel
  • 描述: 一个用于中文旅行规划的语言代理的现实世界基准。

作者

  • Jie-Jing Shao<sup>1</sup>
  • Xiao-Wen Yang<sup>1</sup>
  • Bo-Wen Zhang<sup>1</sup>
  • Bai-Zhi Chen
  • Wen-Da Wei
  • Lan-Zhe Guo
  • Yu-Feng Li

机构

  • 南京大学 LAMDA 小组

相关链接

AI搜集汇总
数据集介绍
main_image_url
构建方式
ChinaTravel数据集通过多阶段流程构建,旨在模拟真实的旅行规划场景。首先,从中国10个热门城市收集了包括720个航班和5770趟火车在内的交通信息,以及3413个景点、4655家餐厅和4124家酒店的详细信息。其次,通过问卷调查收集了250多名用户的真实旅行需求,并结合LLM生成的合成查询,确保数据集的多样性和真实性。最后,通过自动化验证和人工校验,确保数据质量,并使用领域特定语言(DSL)进行逻辑约束的定义和验证。
特点
ChinaTravel数据集具有多方面的特点。首先,它涵盖了多日多兴趣点(POI)的旅行规划,相较于传统的跨城市旅行规划,更贴近实际需求。其次,数据集结合了合成查询和真实用户查询,提供了多样化的测试场景。此外,通过引入DSL,数据集支持自动化的逻辑约束验证,确保生成的旅行计划在可行性、约束满足和偏好比较等方面得到全面评估。
使用方法
ChinaTravel数据集可用于评估语言代理在旅行规划中的表现。研究者可以通过提供的API接口查询交通、景点、餐厅和住宿等信息,并使用DSL定义的逻辑约束和偏好要求生成旅行计划。数据集提供了详细的评估指标,包括可行性、约束满足率和偏好比较等,帮助研究者全面评估模型的性能。此外,数据集还支持神经符号方法的集成,研究者可以结合符号推理和神经网络模型,进一步提升旅行规划的准确性和可靠性。
背景与挑战
背景概述
近年来,随着大型语言模型(LLMs)在语言推理和工具集成方面的显著进展,语言代理在实际应用中的开发迅速兴起。其中,旅行规划作为一个兼具学术挑战与实际价值的领域,因其复杂性和市场需求而备受关注。然而,现有的基准测试未能充分反映真实世界中多样化的需求,难以支持语言代理的实际部署。为填补这一空白,南京大学的研究团队于2024年推出了ChinaTravel数据集,专注于真实的中国旅行规划场景。该数据集通过问卷调查收集旅行需求,并提出了一种可组合的领域特定语言,支持可扩展的评估过程,涵盖可行性、约束满足和偏好比较等多个维度。实验表明,神经符号代理在旅行规划中的约束满足率显著优于纯神经模型,达到了27.9%,而纯神经模型的约束满足率仅为2.6%。
当前挑战
ChinaTravel数据集在构建过程中面临多重挑战。首先,旅行规划领域的复杂性要求语言代理具备强大的语言推理能力,尤其是在处理开放式语言表达和上下文依赖的语义时。其次,用户需求的多样性使得基于预定义概念的约束验证难以扩展,尤其是在处理未见过的概念组合时。此外,数据集的构建过程中,如何从真实用户中收集多样化的需求并确保数据质量也是一个重要挑战。最后,尽管神经符号代理在约束满足方面表现优异,但其对领域特定语言的准确翻译和组合推理能力仍有待提升,尤其是在处理复杂的多天多兴趣点行程规划时。
常用场景
经典使用场景
ChinaTravel数据集的经典使用场景主要集中在多日多兴趣点(POI)的旅行规划任务中。该数据集通过收集中国10个热门城市的真实旅行信息,包括交通、住宿、餐饮和景点等,为语言代理提供了丰富的资源,使其能够在复杂的旅行规划中生成可行且合理的行程。例如,用户可以输入从上海到北京的两日游需求,要求参观博物馆、品尝北京美食,并设定预算,语言代理则需要根据这些约束条件生成详细的行程计划。
衍生相关工作
ChinaTravel数据集的发布激发了大量相关研究工作,特别是在神经符号计算和语言代理领域。许多研究者基于该数据集开发了新的算法和模型,以提升语言代理在复杂旅行规划中的表现。例如,一些研究通过引入形式化验证工具,进一步提高了神经符号代理的约束满足率。此外,该数据集还推动了多日多POI旅行规划系统的开发,为未来的智能旅行助手提供了技术支持。
数据集最近研究
最新研究方向
ChinaTravel数据集在旅游规划领域的前沿研究方向主要集中在神经符号方法与大语言模型(LLMs)的结合上。该数据集通过引入真实的中国旅游需求,构建了一个多日多兴趣点(multi-POI)的旅游规划基准,旨在评估语言代理在复杂场景中的可行性、约束满足和偏好比较能力。研究表明,神经符号代理在约束满足率上显著优于纯LLM方法,达到了27.9%的约束满足率,远超纯神经模型的2.6%。此外,该数据集还揭示了开放语言推理和未见概念组合等关键挑战,为未来在复杂旅游规划场景中提升语言代理的实用性提供了重要方向。
相关研究论文
  • 1
    ChinaTravel: A Real-World Benchmark for Language Agents in Chinese Travel Planning南京大学 · 2024年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

Alexa Domains

该数据集由前 100 万个网站的 URL 组成。 域名使用 Alexa 流量排名进行排名 是使用浏览行为的组合来确定的 网站上的用户数、唯一身份访问者的数量和网页浏览量。更详细地说,唯一身份访问者是 在给定日期访问网站的唯一用户数, 和 pageviews 是用户 URL 请求的总数 网站。但是,对同一网站的多个请求 在同一天被计为一次综合浏览量。网站 独立访问者和综合浏览量的最高组合 排名最高

OpenDataLab 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国地质调查局: 全国1∶200 000区域水文地质图空间数据库

全国1∶200 000区域水文地质图空间数据库以建国后在全国范围内(本次未在香港特别行政区、澳门特别行政区和台湾省开展工作) 30个省开展的1∶200 000区域水文地质普查工作所取得的区域水文地质普查报告、综合水文地质图等地质资料为数据源,在制定的“1∶200 000区域水文地质图空间数据库图层及属性文件格式标准”的基础上,建成了一个全国性的、大型的区域水文地质学空间数据库。该数据库总共采集、处理了全国范围内1∶200 000图幅的<number>1 017</number>幅全要素综合水文地质图信息,全部数据量约50 GB。数据库涵盖了以1∶200 000国际标准图幅为管理单位的水文地质要素空间数据图层,内容包括:地理要素(交通层、水系层、行政区划层等),基础地质要素(地层分区层、断裂构造层),水文地质要素(地下水类型层、地下水富水性层、地下水迳流模数层,地下水水质层、水文地质特征层、地下水利用规划层),专题要素(综合水文地质柱状图,水文地质剖面图) 四大类近30个要素图层。空间数据库主要采用MapGIS地理信息系统格式存储,形成了目前国内覆盖范围最广、包含信息最完整的区域水文地质图空间数据库成果,是地质领域全国性最重要的基础信息资源之一。

DataCite Commons 收录

Beijing Traffic

The Beijing Traffic Dataset collects traffic speeds at 5-minute granularity for 3126 roadway segments in Beijing between 2022/05/12 and 2022/07/25.

Papers with Code 收录