five

万家数科数据罗盘|零售数据分析数据集|商业智能数据集

收藏
上海数据交易所登记层2024-06-13 更新2024-08-13 收录
零售数据分析
商业智能
下载链接:
https://nidts.chinadep.com/reg-hall/product-detail?id=3108
下载链接
链接失效反馈
资源简介:
数据罗盘是基于华润万家旗下商超销售、消费者行为、供应链、社媒数据打造的高质量数据产品,集成了销售、营促销、会员、商品、供应链、结算以及社媒等多个应用场景,为您提供全面的零售数据使用和分析服务。产品性能稳定、数据准确、使用便捷,通过该产品您可以轻松获取零售相关数据,进行定制化分析或生成标准洞察报告,监视销售情况,优化促销活动和会员管理,进行品牌推广和舆情监测,挖掘零售数据潜力,实现数据驱动业绩增长。
提供机构:
万家数科商业数据有限公司
创建时间:
2024-06-13
AI搜集汇总
数据集介绍
main_image_url
背景与挑战
背景概述
万家数科数据罗盘是一个基于华润万家商超数据的零售数据产品,集成了销售、消费者行为、供应链和社媒数据,覆盖多个应用场景,旨在通过数据驱动实现业绩增长。数据集每日更新,覆盖全国100个一二线城市,适用于市场营销和消费者研究。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

RAVDESS

情感语音和歌曲 (RAVDESS) 的Ryerson视听数据库包含7,356个文件 (总大小: 24.8 GB)。该数据库包含24位专业演员 (12位女性,12位男性),以中性的北美口音发声两个词汇匹配的陈述。言语包括平静、快乐、悲伤、愤怒、恐惧、惊讶和厌恶的表情,歌曲则包含平静、快乐、悲伤、愤怒和恐惧的情绪。每个表达都是在两个情绪强度水平 (正常,强烈) 下产生的,另外还有一个中性表达。所有条件都有三种模态格式: 纯音频 (16位,48kHz .wav),音频-视频 (720p H.264,AAC 48kHz,.mp4) 和仅视频 (无声音)。注意,Actor_18没有歌曲文件。

OpenDataLab 收录

CMU-MOSEI

CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) is the largest dataset of sentence-level sentiment analysis and emotion recognition in online videos. CMU-MOSEI contains over 12 hours of annotated video from over 1000 speakers and 250 topics.

Papers with Code 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

TongueDx Dataset

TongueDx数据集是一个专为远程舌诊研究设计的综合性舌象图像数据集,由香港理工大学和新加坡管理大学的研究团队创建。该数据集包含5109张图像,涵盖了多种环境条件下的舌象,图像通过智能手机和笔记本电脑摄像头采集,具有较高的多样性和代表性。数据集不仅包含舌象图像,还提供了详细的舌面属性标注,如舌色、舌苔厚度等,并附有受试者的年龄、性别等人口统计信息。数据集的创建过程包括图像采集、舌象分割、标准化处理和多标签标注,旨在解决远程医疗中舌诊图像质量不一致的问题。该数据集的应用领域主要集中在远程医疗和中医诊断,旨在通过自动化技术提高舌诊的准确性和可靠性。

arXiv 收录