five

reddit_dataset_12|社交媒体分析数据集|机器学习数据集

收藏
huggingface2025-01-24 更新2025-01-25 收录
社交媒体分析
机器学习
下载链接:
https://huggingface.co/datasets/bit0/reddit_dataset_12
下载链接
链接失效反馈
资源简介:
Bittensor Subnet 13 Reddit数据集是Bittensor Subnet 13去中心化网络的一部分,包含预处理的Reddit数据。数据由网络矿工持续更新,提供实时的Reddit内容流,适用于各种分析和机器学习任务。数据集支持多种任务,如情感分析、主题建模、社区分析和内容分类。数据集主要包含英文内容,但也可能是多语言的。数据集结构包括每个Reddit帖子或评论的实例,包含文本、标签、数据类型、社区名称、日期时间、编码的用户名和编码的URL等字段。数据集没有固定的划分,用户应根据需求创建自己的划分。数据来源于Reddit的公开帖子和评论,遵循平台的服务条款和API使用指南。所有用户名和URL都被编码以保护用户隐私。数据集可能包含社交媒体平台常见的噪音、垃圾信息或无关内容,并且可能存在时间偏差。数据集发布在MIT许可证下,使用还需遵守Reddit的使用条款。
创建时间:
2025-01-23
AI搜集汇总
数据集介绍
main_image_url
构建方式
该数据集构建于Bittensor Subnet 13去中心化网络之上,通过采集Reddit平台上的公开帖子和评论数据,严格遵守平台的API使用条款。数据由网络矿工实时更新,确保了数据的时效性和动态性。所有用户名和URL均经过编码处理,以保护用户隐私,避免敏感信息的泄露。
使用方法
用户可根据需求自行划分数据集,利用时间戳进行数据筛选。该数据集适用于文本分类、情感分析、命名实体识别、文本生成等多种自然语言处理任务。研究人员可通过分析社区动态、用户行为等,探索社交媒体数据的潜在价值。使用时应考虑数据中可能存在的偏见和噪声,确保分析结果的客观性。
背景与挑战
背景概述
reddit_dataset_12数据集由Bittensor Subnet 13网络于2025年创建,旨在为研究人员和数据科学家提供一个实时更新的Reddit数据源。该数据集由网络矿工持续更新,涵盖了Reddit上的公开帖子和评论,适用于多种自然语言处理任务,如情感分析、主题分类、命名实体识别等。其核心研究问题在于如何利用去中心化网络的力量,实时捕捉和分析社交媒体上的动态内容,从而推动社交网络分析和机器学习领域的发展。该数据集的出现为社交媒体的多维度研究提供了丰富的数据支持,具有广泛的应用前景。
当前挑战
reddit_dataset_12数据集在构建和应用过程中面临多重挑战。首先,社交媒体的数据质量参差不齐,可能包含噪声、垃圾信息或无关内容,这对数据清洗和预处理提出了较高要求。其次,由于数据来源于公开的Reddit内容,可能存在时间和空间上的偏差,难以全面反映整体社交媒体生态。此外,尽管用户名和URL已被编码以保护隐私,但仍需警惕潜在的隐私泄露风险。最后,Reddit数据的多样性和动态性使得模型训练和评估变得复杂,尤其是在多语言和多任务场景下,如何有效提取和利用数据特征仍是一个亟待解决的问题。
常用场景
经典使用场景
reddit_dataset_12数据集广泛应用于社交媒体分析领域,特别是在情感分析和主题建模方面。研究人员可以通过该数据集深入挖掘Reddit社区中的用户情感倾向和话题分布,进而揭示社交媒体中的舆论动态和用户行为模式。其多语言特性也为跨文化研究提供了丰富的数据支持。
解决学术问题
该数据集有效解决了社交媒体数据中的情感分类、话题识别和社区分析等学术问题。通过提供实时更新的Reddit内容,研究人员能够捕捉到最新的舆论趋势和用户互动模式,从而为社交媒体研究提供了宝贵的数据资源。此外,数据中的编码处理也确保了用户隐私的保护,符合学术研究的伦理要求。
实际应用
在实际应用中,reddit_dataset_12被广泛用于品牌监控、市场趋势分析和舆情预警系统。企业可以通过分析Reddit上的用户评论和帖子,了解消费者对产品或服务的真实反馈,从而优化营销策略。此外,政府和公共机构也可以利用该数据集监测社会热点话题,及时应对潜在的舆论危机。
数据集最近研究
最新研究方向
近年来,随着社交媒体数据的爆炸式增长,Reddit数据集在自然语言处理领域的研究中占据了重要地位。reddit_dataset_12作为Bittensor Subnet 13的一部分,提供了实时更新的Reddit内容,涵盖了从情感分析到文本生成等多种任务。当前的研究热点集中在如何利用这一数据集进行更精细的情感分析和主题建模,尤其是在多语言环境下的应用。此外,社区分析和内容分类也是研究的前沿方向,旨在通过深度学习模型揭示社交媒体中的用户行为模式和内容传播机制。该数据集的实时性和多样性为研究者提供了丰富的实验材料,推动了社交网络分析和自然语言处理技术的进一步发展。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录

DALY

DALY数据集包含了全球疾病负担研究(Global Burden of Disease Study)中的伤残调整生命年(Disability-Adjusted Life Years, DALYs)数据。该数据集提供了不同国家和地区在不同年份的DALYs指标,用于衡量因疾病、伤害和早逝导致的健康损失。

ghdx.healthdata.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Titanic Dataset

Titanic Data Analysis: A Journey into Passenger Profiles and Survival Dynamics

kaggle 收录