POD! Fish- DFG Striped Bass Population estimates and stocking data|鱼类种群研究数据集|标记重捕方法数据集
收藏中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
Allen Brain Atlas
Allen Brain Atlas 是一个综合性的脑图谱数据库,提供了详细的大脑解剖结构、基因表达数据、神经元连接信息等。该数据集包括了小鼠、人类和其他模式生物的大脑数据,旨在帮助研究人员理解大脑的结构和功能。
portal.brain-map.org 收录
PlantVillage
在这个数据集中,39 种不同类别的植物叶子和背景图像可用。包含 61,486 张图像的数据集。我们使用了六种不同的增强技术来增加数据集的大小。这些技术是图像翻转、伽玛校正、噪声注入、PCA 颜色增强、旋转和缩放。
OpenDataLab 收录
DIV2K
displayName: DIV2K labelTypes: [] license: - DIV2K Custom mediaTypes: - Image paperUrl: https://doi.org/10.1109/CVPRW.2017.150 publishDate: "2017" publishUrl: https://data.vision.ee.ethz.ch/cvl/DIV2K/ publisher: - ETH Zurich tags: - RGB Image taskTypes: - Image Super-resolution --- # 数据集介绍 ## 简介 DIV2K数据集分为: 列车数据: 从800高清高分辨率图像开始,我们获得相应的低分辨率图像,并为2、3和4个降尺度因子提供高分辨率和低分辨率图像 验证数据: 100高清晰度高分辨率图像用于生成低分辨率对应图像,低分辨率从挑战开始提供,并用于参与者从验证服务器获得在线反馈; 当挑战的最后阶段开始时,高分辨率图像将被释放。 测试数据: 100多样的图像用于生成低分辨率的相应图像; 参与者将在最终评估阶段开始时收到低分辨率图像,并在挑战结束并确定获胜者后宣布结果。 ## 引文 ``` @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops}, pages={126--135}, year={2017} } ``` ## Download dataset :modelscope-code[]{type="git"}
魔搭社区 收录
猫狗分类
## 数据集描述 ### 数据集简介 本数据集是简单的猫狗二分类数据集,共2个类别,其中训练集包含275张带注释的图像,验证集包含70张带注释的图像。整个数据集共10.3MB,可用于快速模型验证、性能评估、小数据集训练等。 ### 数据集支持的任务 可用于快速模型验证、性能评估、小数据集训练等。 ## 数据集的格式和结构 ### 数据格式 数据集包括训练集train和验证集val,train和val文件夹之下按文件夹进行分类,共有2个子文件夹,同类别标签的图片在同一个文件夹下,图片格式为JPG。同时包含与标注文件中label id相对应的类名文件classname.txt。 ### 数据集加载方式 ```python from modelscope.msdatasets import MsDataset from modelscope.utils.constant import DownloadMode ms_train_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='train') # 加载训练集 print(next(iter(ms_train_dataset))) ms_val_dataset = MsDataset.load( 'cats_and_dogs', namespace='tany0699', subset_name='default', split='validation') # 加载验证集 print(next(iter(ms_val_dataset))) ``` ### 数据分片 本数据集包含train和val数据集。 | 子数据集 | train | val | test | |---------|-------------:|-----------:|---------:| | default | 训练集 | 验证集 | / | ### Clone with HTTP ```bash git clone https://www.modelscope.cn/datasets/tany0699/cats_and_dogs.git ```
魔搭社区 收录
