five

SceneNN:带有注释的场景网格数据集,RGB-D 场景数据集|3D视觉数据集|计算机视觉数据集

收藏
帕依提提2024-03-04 收录
3D视觉
计算机视觉
下载链接:
https://www.payititi.com/opendatasets/show-792.html
下载链接
链接失效反馈
资源简介:
我们引入了一个由 100 多个室内场景组成的 RGB-D 场景数据集。我们的场景是在马萨诸塞大学波士顿分校和新加坡科技设计大学的办公室、宿舍、教室、食品储藏室等各个地方拍摄的。所有场景都被重建为三角形网格,并具有每个顶点和每个像素的注释。我们使用细粒度信息进一步丰富了数据集,例如轴对齐边界框、定向边界框和对象姿势。 SceneNN: A Scene Meshes Dataset with aNNotations Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung International Conference on 3D Vision (3DV) 2016. Best Paper Honorable Mention.
提供机构:
帕依提提
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

糖尿病预测数据集

糖尿病相关的医学研究或者健康数据

AI_Studio 收录

danaroth/icvl

ICVL是一个高光谱图像数据集,由Specim PS Kappa DX4高光谱相机和旋转平台进行空间扫描采集。数据集目前包含200张图像,并且会逐步增加。图像的空间分辨率为1392×1300,覆盖519个光谱波段(400-1000nm,间隔约1.25nm)。数据集提供了ENVI格式的原始数据和MAT格式的下采样数据(31个光谱通道,400-700nm,间隔10nm)。原始数据集仅包含干净的图像,用于高光谱图像去噪的测试数据来自另一篇论文。

hugging_face 收录

M4-SAR

M4-SAR是一个多分辨率、多极化、多场景、多源数据集,用于光学与合成孔径雷达(SAR)融合的目标检测。该数据集由南京理工大学PCA实验室、安徽大学ICSP教育部重点实验室和南开大学计算机科学学院共同构建,包含112,184对精确对齐的图像和近一百万个标注实例。数据集覆盖六个关键类别,并使用公开的光学和SAR数据,包括Sentinel-1和Sentinel-2卫星提供的数据。为了克服SAR标注的挑战,该研究提出了一种半监督的光学辅助标注策略,利用光学图像的语义丰富性来显著提高标注质量。M4-SAR数据集旨在解决现有光学和SAR数据集的局限性,为多源融合目标检测任务提供大规模、高质量、标准化的数据集,并推动相关研究的发展。

arXiv 收录

Global Urban Boundaries (GUB)

Global Urban Boundaries (GUB) 数据集包含了全球城市边界的详细信息,提供了高分辨率的城市边界数据,用于分析城市化进程和城市扩张。

datacatalog.worldbank.org 收录