联合国开发计划署人类发展指数数据集|人类发展指数数据集|全球统计数据集
收藏
- 联合国开发计划署首次发布人类发展指数(HDI),作为衡量各国人类发展水平的重要指标。
- 联合国开发计划署对HDI的计算方法进行首次重大修订,引入了预期寿命、教育水平和人均国民总收入三个维度。
- 联合国开发计划署发布《人类发展报告》,首次引入性别发展指数(GDI)和性别不平等指数(GII),进一步细化对性别平等的评估。
- HDI的计算方法再次修订,教育维度中引入了平均受教育年限和预期受教育年限两个指标。
- 联合国开发计划署发布《人类发展报告》,首次引入多维贫困指数(MPI),以更全面地评估贫困状况。
- 联合国开发计划署对HDI的计算方法进行微调,调整了人均国民总收入的权重,以更准确反映各国的发展水平。
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
OpenSonarDatasets
OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。
github 收录
Interaction Dataset
Interaction Dataset是一个用于处理和可视化交通场景的数据集,支持轨迹预测挑战,包括三个不同的预测模型训练和测试轨道。
github 收录
中国逐日降水数据集(1961-2022,0.1°/0.25°/0.5°)
CHM_PRE数据集基于中国境内及周边1961至今共2839个站点的日降水观测,在传统的“降水背景场 + 降水比值场”的数据集构建思路上,尝试应用月值降水约束和地形特征校正,并依据中国范围内约4万个高密度站点2015–2019年的日降水量插值后数据进行精度评价。经评估认为,CHM_PRE可以较好的表征降水的空间变异性,其日值时间序列与高密度站点日值降水观测结果之间的相关系数中位数为0.78,均方根误差中位数为8.8 mm/d,KGE值中位数为0.69,与目前常用的降水数据集(CGDPA、CN05.1、CMA V2.0)有很好的一致性。 数据集的时间范围为1961年至今,空间分辨率为0.1°、0.25°和0.5°,经纬度范围为18°N–54°N, 72°E–136°E。
国家青藏高原科学数据中心 收录
学生课堂行为数据集 (SCB-dataset3)
学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。
arXiv 收录