five

MuMu-LLaMA|多模态音乐理解数据集|音乐生成数据集

收藏
arXiv2024-12-10 更新2024-12-11 收录
多模态音乐理解
音乐生成
下载链接:
http://arxiv.org/abs/2412.06660v1
下载链接
链接失效反馈
资源简介:
MuMu-LLaMA数据集由腾讯PCG ARC实验室和新加坡国立大学联合创建,专门用于多模态音乐理解和生成任务。该数据集包含167.69小时的文本、图像、视频和音乐注释,通过先进的视觉模型如LLaVA和Video-LLaVA进行标注,确保数据的多样性和高质量。数据集的创建过程结合了多种模态的特征提取和标注技术,旨在为多模态音乐研究提供丰富的训练数据。该数据集主要应用于音乐理解和生成领域,旨在解决多模态输入下的音乐理解和生成问题,推动音乐创作和分析的创新应用。
提供机构:
腾讯PCG ARC实验室, 新加坡国立大学
创建时间:
2024-12-10
AI搜集汇总
数据集介绍
main_image_url
构建方式
MuMu-LLaMA数据集通过整合多种模态的数据,包括文本、图像、视频和音乐注释,构建了一个全面的多模态音乐理解与生成数据集。该数据集包含167.69小时的标注数据,使用先进的视觉模型如LLaVA和Video-LLaVA进行注释,确保了数据的质量和多样性。通过这些注释,数据集为多模态音乐理解与生成任务提供了丰富的训练样本,涵盖了从音乐理解到音乐生成的广泛应用场景。
特点
MuMu-LLaMA数据集的核心特点在于其多模态数据的全面性和高质量注释。数据集不仅包含了丰富的音乐数据,还结合了图像和视频等多模态信息,使得模型能够从多个维度理解音乐内容。此外,数据集的注释采用了先进的视觉模型,确保了注释的准确性和多样性,为模型训练提供了坚实的基础。
使用方法
MuMu-LLaMA数据集可用于多种多模态音乐理解与生成任务,包括音乐理解、文本到音乐生成、基于提示的音乐编辑以及多模态音乐生成。研究人员可以通过该数据集训练模型,使其具备从文本、图像和视频中生成音乐的能力。此外,数据集还可用于评估模型的性能,通过对比不同模型在音乐理解与生成任务中的表现,进一步优化模型的设计与实现。
背景与挑战
背景概述
MuMu-LLaMA数据集由腾讯PCG ARC Lab和新加坡国立大学的研究人员共同开发,旨在填补多模态音乐理解与生成领域的空白。该数据集包含167.69小时的文本、图像、视频和音乐标注数据,通过先进的视觉模型如LLaVA和Video-LLaVA进行标注,适用于多模态音乐理解与生成任务。MuMu-LLaMA数据集的创建标志着多模态音乐研究的重要进展,为基于大语言模型(LLMs)的音乐理解与生成提供了丰富的训练数据。该数据集的核心研究问题是如何通过多模态输入实现音乐的深度理解与生成,其影响力在于推动了音乐与多模态数据融合的研究,为未来的音乐创作与理解提供了新的技术路径。
当前挑战
MuMu-LLaMA数据集的构建面临多重挑战。首先,多模态音乐数据的标注和整合需要高精度的模型支持,确保数据的质量和多样性。其次,音乐作为一种复杂的艺术形式,其生成与理解涉及情感、节奏、旋律等多维度的信息,如何在多模态输入中准确捕捉这些信息是一个技术难题。此外,现有的音乐数据集在多模态融合方面存在不足,MuMu-LLaMA的创建填补了这一空白,但其规模和多样性仍需进一步扩展。最后,基于该数据集的模型训练需要处理大规模的多模态数据,计算资源和训练效率是另一个重要挑战。
常用场景
经典使用场景
MuMu-LLaMA数据集的经典使用场景主要集中在多模态音乐理解和生成任务中。该数据集通过整合文本、图像、视频和音乐注释,为多模态音乐理解与生成模型提供了丰富的训练数据。典型的应用场景包括从文本生成音乐、基于图像或视频生成音乐、以及通过自然语言指令对音乐进行编辑。这些任务不仅展示了数据集在多模态音乐生成中的潜力,还为音乐创作和编辑提供了新的可能性。
实际应用
MuMu-LLaMA数据集在实际应用中具有广泛的前景。例如,在音乐创作领域,用户可以通过文本描述生成背景音乐,或根据视频内容自动生成配乐,极大地简化了音乐创作流程。此外,该数据集还可用于音乐编辑工具中,用户可以通过自然语言指令对现有音乐进行修改,如调整速度、改变音调或添加特定乐器。这些应用不仅提升了音乐创作的效率,还为非专业用户提供了便捷的音乐编辑工具。
衍生相关工作
基于MuMu-LLaMA数据集,许多相关工作得以展开。例如,研究人员提出了MuMu-LLaMA模型,该模型通过整合多模态数据和大语言模型,实现了从文本、图像和视频生成音乐的功能。此外,该数据集还启发了其他多模态音乐生成模型的开发,如NExT-GPT和AudioLDM 2。这些模型在音乐理解和生成任务中表现出色,进一步推动了多模态音乐生成技术的发展,并为未来的研究提供了新的思路。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录