56_Collinge_et_al_2006_Egg_viability|果蝇生物学数据集|进化生物学数据集
收藏HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
基于站点观测的中国1km土壤湿度日尺度数据集(2000-2022)
本研究提供了中国范围1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2022年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度,数据单位为0.001m³/m³,缺失值为-999,投影为WGS1984。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land气象强迫数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。本研究进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,本研究提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
国家青藏高原科学数据中心 收录
De-Solar Dataset
De-Solar Dataset是一个基于无人机的高质量数据集,用于支持太阳能光伏系统中的障碍物定位和性能评估。它包含超过3,500张手动标记的图像,拍摄高度在15到50英尺之间,每张图像都标注了常见表面障碍物的多边形掩码,如树枝、泥土、树叶、鸟粪和纸张。除了图像数据外,数据集还包括时间戳对齐的电压读数与环境元数据,能够详细分析特定障碍物如何影响面板性能。数据集位于De-Solar Dataset文件夹中,并分为以下组件:Voltage_Data/(包含图像路径、电压读数和环境变量的Excel文件)、Original/(包括原始无人机图像、对应的标注JSON文件和分割掩码)、Cropped_Folder/(包含从原始图像中提取的太阳能电池板的裁剪图像,用于模型训练)、Ground_Folder/(包含数据集中的地面图像)、SolarPV/(包含Solarformer++的数据集)。
github 收录
ReferCOCO数据集
ReferCOCO数据集包括refcoco、refcoco+和refcocog三个子集,用于视觉定位任务。数据集包含图像和对应的描述性文本,用于训练和测试模型识别图像中特定对象的能力。
github 收录
UA-DETRAC
UA-DETRAC是一个大规模的基准数据集,包含100个具有挑战性的真实交通场景视频序列,超过140,000帧,具有丰富的标注信息,包括遮挡、天气、车辆类别、截断和车辆边界框,用于目标检测、目标跟踪和多目标跟踪系统。
arXiv 收录