five

Number of households in the U.S. 1960-2023|家庭人口统计数据集|美国人口普查数据集

收藏
www.statista.com2025-01-15 收录
家庭人口统计
美国人口普查
下载链接:
https://www.statista.com/statistics/183635/number-of-households-in-the-us/
下载链接
链接失效反馈
资源简介:
How many households are in the U.S.?In 2023, there were 131.43 million households in the United States. This is a significant increase from 1960, when there were 52.8 million households in the U.S. What counts as a household? According to the U.S. Census Bureau, a household is considered to be all persons living within one housing unit. This includes apartments, houses, or single rooms, and consists of both related and unrelated people living together. For example, two roommates who share a living space but are not related would be considered a household in the eyes of the Census. It should be noted that group living quarters, such as college dorms, are not counted as households in the Census. Household changes While the population of the United States has been increasing, the average size of households in the U.S. has decreased since 1960. In 1960, there was an average of 3.33 people per household, but in 2023, this figure had decreased to 2.51 people per household. Additionally, two person households make up the majority of American households, followed closely by single-person households.

美国共有多少户家庭?截至2023年,美国共有1.3143亿户家庭。这一数字相较于1960年的5280万户家庭而言,呈现出显著的增长。那么,何谓家庭?根据美国人口普查局的规定,家庭是指居住在同一居住单位内的所有人员。这包括公寓、住宅或单人房间,其中既包括亲属也包括非亲属共同居住的人。例如,两名非亲属关系的室友若共享同一生活空间,则根据普查的定义,他们将被视为一个家庭。值得注意的是,集体居住场所,如大学宿舍,并不计入普查的家庭范畴。家庭结构的变化尽管美国的人口数量持续增长,但自1960年以来,美国家庭的平均规模却在缩小。1960年,每户家庭的平均人数为3.33人,而到了2023年,这一数字降至2.51人。此外,两人家庭构成了美国家庭的大多数,紧随其后的是单人家庭。
提供机构:
Statista
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

CodeGen

CodeGen数据集是一个用于代码生成和理解的大型数据集,包含了多种编程语言的代码片段和相应的自然语言描述。该数据集旨在帮助研究人员和开发者训练和评估代码生成模型,提高代码生成的准确性和效率。

github.com 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录