five

Price Transparency Data Sample: Top 25 Inpatient DRGs in Aetna Texas|医疗定价数据集|数据透明数据集

收藏
Databricks2024-05-09 收录
医疗定价
数据透明
下载链接:
https://marketplace.databricks.com/details/286fb32e-a43e-4342-bd8c-43f952d285cd/Serif-Health_Price-Transparency-Data-Sample:-Top-25-Inpatient-DRGs-in-Aetna-Texas
下载链接
链接失效反馈
资源简介:
**Overview** Serif Health provides access to comprehensive price transparency data from payor machine readable file (MRF) fee schedules including specific negotiated reimbursement rates by NPI, EIN, specialty, and location for available CPT, DRG, HCPCS, and RC codes. This listing contains a sample for Aetna's rates in Texas for the top 25 billed inpatient DRGs. The data includes specific providers' negotiated rates. **Use cases** For Providers: - Competitor benchmarking -- how does your reimbursement schedule compare to peers - Contracting and payer strategy -- negotiating higher reimbursements with commercial payers - Roll-ups / acquisitions / M&A -- identifying targets such as highest reimbursed practices in a region - Provider recruiting and partnerships -- prospecting health systems or individual practitioners to add to your practice - Margin expansion / improvement -- forecasting revenue impact from changing operations (reducing time per visit from ~45 min. to ~20 min., performing procedures using nurse practitioners vs. physicians, alternative coding, ...) For Payers: - Rate and network benchmarking -- size, cost, and scope of networks across competitors and their products (HMO, PPO, ACO, self-insured) - Network expansion, optimization, and management -- scan market to understand relative cost of care, add providers in-network based on adequacy, create narrow high-performance networks, evaluate provider integration to become a "pay-vider" - Plan design -- right-size premiums / deductibles based on reimbursement fees, innovate on fee-for-service and create bundles / capitated arrangements For Employers, TPAs, Brokers - Network comparison -- comparing cost of care across various networks and products - Direct contracting -- determining which providers to add to your network - Payment integrity, claims verification, claims re-pricing -- assess over/under-billing against published fee schedules - Network tiering and steering -- identify sites with lower cost of care and create dynamic co-pay programs to direct patients For Pharmaceuticals, Life Sciences, Medical Devices: - Pricing analysis -- see what 3rd party commercial payers reimburse providers for injectables, medical supplies to capture their margin **Product details** Columns included in the sample are: - Payer: Aetna - Region: Either TX or "Blank" if not provided - Network: Open Access Managed Choice PPO - EIN: A 9 digit taxable identification number without hyphen - NPI List: Comma separated NPI values - NPI List Length: Count of NPIs in NPI list - Taxonomy: Most common NUCC Taxonomy code for the NPIs in the NPI List - Taxonomy Name: NUCC description associated with NUCC Taxonomy Code in "Taxonomy" field - Code: 3 character MS-DRG - Code Type: MS-DRG - Code Type Version: Year associated with published Code Type - Modifier List: Any billing code modifiers present on this code and rate, comma separated. If not present, will be an empty string - Bundled Code List: For ‘bundled’ or ‘capitation’ arrangements, comma separated list of codes included in the bundled rate, otherwise empty string. - Billing Class: Allowed values: ‘professional’ or ‘institutional’ - Place Of Service List: Comma separated list of CMS place of service codes that apply to the stated rate - Negotiation Type: Allowed values: "negotiated", "derived", "fee schedule", "percentage", and "per diem" - Arrangement: Allowed values: ‘ffs’, ‘bundled’, ‘capitation’ - Rate: Decimal with two digits after a period, no commas or dollar signs. e.g. 10125.85 - Additional Information: Any commentary published by payor in MRF, e.g., why 2 different rates exist for the same provider and code - Is Billable: Allowed values: 'true' if CMS accepts claim from that taxonomy for given code, 'false' if CMS does not accept, 'null" if un-determined - Matched On: Field explaining data extension source. Allowed values: “Type1NPI”, “Type2NPI”, “TIN”, “ImputedType2NPI” - Matched ID: The ID (matched or imputed) used to tag this data row - Entity Name: Organization or Entity Name, from TIN or NPI data sources - Entity Address: Organization or Entity Address, from TIN or NPI data sources
提供机构:
Serif Health
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

全国 1∶200 000 数字地质图(公开版)空间数据库

As the only one of its kind, China National Digital Geological Map (Public Version at 1∶200 000 scale) Spatial Database (CNDGM-PVSD) is based on China' s former nationwide measured results of regional geological survey at 1∶200 000 scale, and is also one of the nationwide basic geosciences spatial databases jointly accomplished by multiple organizations of China. Spatially, it embraces 1 163 geological map-sheets (at scale 1: 200 000) in both formats of MapGIS and ArcGIS, covering 72% of China's whole territory with a total data volume of 90 GB. Its main sources is from 1∶200 000 regional geological survey reports, geological maps, and mineral resources maps with an original time span from mid-1950s to early 1990s. Approved by the State's related agencies, it meets all the related technical qualification requirements and standards issued by China Geological Survey in data integrity, logic consistency, location acc racy, attribution fineness, and collation precision, and is hence of excellent and reliable quality. The CNDGM-PVSD is an important component of China' s national spatial database categories, serving as a spatial digital platform for the information construction of the State's national economy, and providing informationbackbones to the national and provincial economic planning, geohazard monitoring, geological survey, mineral resources exploration as well as macro decision-making.

DataCite Commons 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

Pubmed

Pubmed 数据集包含来自 PubMed 数据库的 19717 篇与糖尿病相关的科学出版物,分为三类之一。引文网络由 44338 个链接组成。数据集中的每个出版物都由字典中的 TF/IDF 加权词向量描述,该字典由 500 个唯一词组成。

OpenDataLab 收录

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录