OSCD (Onera Satellite Change Detection)|卫星图像分析数据集|地表变化检测数据集
收藏
- OSCD数据集首次发表,由ONERA(法国航空航天实验室)发布,旨在为卫星图像变化检测研究提供基准数据。
- OSCD数据集首次应用于国际计算机视觉与模式识别会议(CVPR)的卫星图像变化检测挑战赛,推动了相关算法的发展。
- OSCD数据集被广泛应用于多个学术研究项目,成为卫星图像变化检测领域的重要基准。
- OSCD数据集的第二版发布,增加了新的图像数据和变化检测任务,进一步丰富了研究内容。
lmarena-ai/arena-hard-auto-v0.1
--- license: apache-2.0 dataset_info: features: - name: question_id dtype: string - name: category dtype: string - name: cluster dtype: string - name: turns list: - name: content dtype: string splits: - name: train num_bytes: 251691 num_examples: 500 download_size: 154022 dataset_size: 251691 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Arena-Hard-Auto **Arena-Hard-Auto-v0.1** ([See Paper](https://arxiv.org/abs/2406.11939)) is an automatic evaluation tool for instruction-tuned LLMs. It contains 500 challenging user queries sourced from Chatbot Arena. We prompt GPT-4-Turbo as judge to compare the models' responses against a baseline model (default: GPT-4-0314). Notably, Arena-Hard-Auto has the highest *correlation* and *separability* to Chatbot Arena among popular open-ended LLM benchmarks ([See Paper](https://arxiv.org/abs/2406.11939)). If you are curious to see how well your model might perform on Chatbot Arena, we recommend trying Arena-Hard-Auto. Please checkout our GitHub repo on how to evaluate models using Arena-Hard-Auto and more information about the benchmark. If you find this dataset useful, feel free to cite us! ``` @article{li2024crowdsourced, title={From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline}, author={Li, Tianle and Chiang, Wei-Lin and Frick, Evan and Dunlap, Lisa and Wu, Tianhao and Zhu, Banghua and Gonzalez, Joseph E and Stoica, Ion}, journal={arXiv preprint arXiv:2406.11939}, year={2024} } ```
hugging_face 收录
EcoInvent
EcoInvent是一个生命周期评估(LCA)数据库,包含了大量产品的环境影响数据。它提供了详细的产品生命周期数据,包括原材料提取、生产、使用和废弃处理等各个阶段的环境影响信息。
www.ecoinvent.org 收录
VisDrone 2021
VisDrone2021 数据集由天津大学机器学习与数据挖掘实验室 AISKYEYE 团队收集。基准数据集由 400 个视频片段组成,由 265,228 帧和 10,209 张静态图像组成,由各种无人机摄像头拍摄,涵盖了广泛的方面,包括位置(取自中国相隔数千公里的 14 个不同城市)、环境(城市和乡村)、物体(行人、车辆、自行车等)和密度(稀疏和拥挤的场景)。请注意,数据集是使用各种无人机平台(即具有不同型号的无人机)、在不同场景以及各种天气和照明条件下收集的。这些框架使用超过 260 万个边界框或经常感兴趣的目标点进行手动注释,例如行人、汽车、自行车和三轮车。为了更好地利用数据,还提供了一些重要的属性,包括场景可见性、对象类别和遮挡。
OpenDataLab 收录
ANC
美国国家语料库(American National Corpus,简称ANC)是一个大规模的电子美国英语语料库,包含多种类型文本及口语数据转录,旨在全面反映美国英语的多样性。其开放部分OANC约有1500万字,涵盖多种文体,且进行了自动标注。
anc.org 收录
HIT-UAV
HIT-UAV数据集包含2898张红外热成像图像,这些图像从43,470帧无人机拍摄的画面中提取。数据集涵盖了多种场景,如学校、停车场、道路和游乐场,在不同的光照条件下,包括白天和夜晚。
github 收录