five

Data from: Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: implications for climate-driven range shift in a butterfly|气候变化数据集|物种分布数据集

收藏
DataONE2017-08-11 更新2024-06-26 收录
气候变化
物种分布
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
1. Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. 2. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. 3. Second, we used a 13-year monitoring data set including the majority of all habitat patches at the species’ northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonisation-extinction dynamics. 4. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species’ larval development. In contrast, colonisation and extinction dynamics were better explained by patch area, between-patch connectivity, and host plant density. This suggests that the response of the species to future climate change may be limited by future land-use and how its host plants respond to climate change. It is thus probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. 5. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate, and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land-use, appear thus essential to provide predictions useful for actions mitigating the negative effects of climate change.
创建时间:
2017-08-11
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

中国逐日格点降水数据集V2(1960–2024,0.1°)

CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。

国家青藏高原科学数据中心 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录