five

Supplementary Material for: A Smarter Way to Use Your Smartphone: An Intervention to Limit Smartphone-Related Distractions Reduces Hyperactivity but Not Inattention Symptoms|智能手机使用数据集|心理健康数据集

收藏
Mendeley Data2024-06-25 更新2024-06-28 收录
智能手机使用
心理健康
下载链接:
https://karger.figshare.com/articles/dataset/Supplementary_Material_for_A_Smarter_Way_to_Use_Your_Smartphone_An_Intervention_to_Limit_Smartphone-Related_Distractions_Reduces_Hyperactivity_but_Not_Inattention_Symptoms/19121846/1
下载链接
链接失效反馈
资源简介:
Introduction: Smartphones are often helpful in our everyday lives. Yet, they also tend to interrupt us during other activities. It has been argued that such distractions contribute to attention-deficit/hyperactivity disorder-like symptoms. However, since there are mostly correlational studies, the causal nature of this relationship is unclear. Our aim was to test whether reducing smartphone-related distractions might have a beneficial effect on inattention and hyperactive symptoms. Methods: We conducted a 1-week field experiment with 37 healthy undergraduates and quasi-randomly assigned them to an intervention or control group (CG). The intervention group was given theory-based specific instructions that aimed at reducing smartphone-related distractions, whereas the CG received no intervention. The outcomes of interest were inattention level, hyperactive symptoms, and working memory accuracy. Results: Compared to those in the control condition, participants who limited their smartphone use showed considerable reductions in hyperactive symptoms after 1 week – particularly those who displayed high problematic smartphone use. However, there were no group differences regarding inattention symptoms and working memory accuracy. Discussion: The results give a first hint that strategically reducing smartphone-related distractions via specific but simple use modifications can mitigate hyperactive symptoms. Especially people with problematic smartphone use seem to profit from such an intervention. Remaining questions and directions are discussed.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

AlphaFold Protein Structure Database

AlphaFold是由Google DeepMind开发的AI系统,可从氨基酸序列预测蛋白质的三维结构,其准确性媲美实验方法。Google DeepMind与欧洲生物信息学研究所(EMBL-EBI)合作创建了AlphaFold Protein Structure Database,免费向科学界开放,现已涵盖超过2亿条UniProt蛋白序列,包含人类及47种重要生物的蛋白质组。

alphafold.com 收录

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

广州市平均工资情况

该数据集包含了广州市平均工资情况的相关统计数据,并按照国民经济行业、隶属关系、执行会计制度等分类依据展示为更多细分指标。

开放广东 收录