five

中国长序列地表冻融数据集——决策树算法(1987-2009)|地表冻融数据集|遥感数据分析数据集

收藏
国家青藏高原科学数据中心2020-10-18 更新2024-03-07 收录
地表冻融
遥感数据分析
下载链接:
https://data.tpdc.ac.cn/zh-hans/data/c5f2a6bd-f481-4390-851f-3519d6eb7fdd
下载链接
链接失效反馈
资源简介:
中国长序列地表冻融数据集——决策树算法(1987-2009)是利用被动微波遥感 SSM/I亮度温度资料通过决策树分类提取得到。 该数据集采用EASE-Grid投影方式(等积割圆柱投影,标准纬线为±30°),空间分辨率25.067525km,提供逐日的中国大陆主体部分的地表冻融状态分类结果。数据集按年份存放,共由23个文件夹组成,从1987到2009。每个文件夹里包含当年的逐日地表冻融分类结果,为ASCII码文件,命名规则为:SSMI-frozenYYYY***.txt,其中YYYY代表年,***代表儒略日(001~365/366)。冻融分类结果txt文件可直接用文本程序打开察看,还可用ArcView + Spatial Analyst扩展模块或者Arcinfo的Asciigrid命令打开。 提取地表冻融的原始数据来源于由美国国家雪冰数据中心(NSIDC)处理的1987 年以来的逐日被动微波数据,这一数据集采用EASE-Grid(等面积可扩充地球网格)作为标准格式。 中国地表冻融长时间序列数据集——决策树算法(1987-2009)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为25.067525km,经度范围为60°~140°E,纬度为15°~55°N。 投影信息:全球等积圆柱EASE-Grid投影,关于EASE-Grid投影的详细信息见数据准备中关于这种投影的说明。 数据格式:数据集由1987到2009共23个文件夹组成,每个文件夹里包括当年的逐日地表冻融分类结果,按日存储为txt文件。文件命名规则:例如SMI-frozen1994001.txt代表1994年第1天的地表冻融分类结果。该数据集的ASCII码文件是由头文件和主体内容构成。头文件包括行数、列数、x-轴左下点坐标、y-轴左下点坐标、栅格大小、无数据区标值等6行描述信息组成;主体内容为根据行数列数组成的二维数组,以列为优先进行排列,数值为整数型,从1到4,1代表冻结,2代表融化,3代表沙漠,4代表降水。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter和cellsize单位为m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
提供机构:
晋锐,李新
创建时间:
2012-04-06
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

CIFAR-10

CIFAR-10 数据集由 10 个类别的 60000 个 32x32 彩色图像组成,每个类别包含 6000 个图像。有 50000 个训练图像和 10000 个测试图像。 数据集分为五个训练批次和一个测试批次,每个批次有 10000 张图像。测试批次恰好包含来自每个类别的 1000 个随机选择的图像。训练批次包含随机顺序的剩余图像,但一些训练批次可能包含来自一个类的图像多于另一个。在它们之间,训练批次恰好包含来自每个类别的 5000 张图像。

OpenDataLab 收录

Traditional-Chinese-Medicine-Dataset-SFT

该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。

huggingface 收录