FER2013, CK+, Genius HR Dataset|情绪识别数据集|心理健康数据集
收藏Facial Expression Recognition (FER) for Mental Health Detection
Overview
- Purpose: Analyze facial expressions to detect mental health conditions using AI models like Swin Transformer, Vision Transformers (ViT), and Custom CNNs.
- Applications: Healthcare, HR, and research for early detection of mental health issues such as anxiety, depression, OCD, PTSD, and stress-related disorders.
- Key Features: High-accuracy emotion detection, integration with mental health scoring systems, real-time emotion detection systems.
Repository Structure
FER-for-Mental-Health-Detection ├── Models │ ├── Swin_Transformer │ ├── Custom_CNN │ ├── ViT_Model │ └── Other_Models ├── datasets ├── images ├── utilities ├── README.md ├── usage_guide.md ├── LICENSE └── requirements.txt
Datasets
- FER2013: 35,887 grayscale images labeled with seven emotions. Source: FER2013 on Kaggle.
- CK+: 920 images with eight emotion labels. Source: CK+ Dataset Official Site.
- Genius HR Dataset: Real-world dataset for workplace mental health analysis. Source: Proprietary dataset.
Installation
- Prerequisites: Python 3.10+, PyTorch 2.0+, CUDA-enabled GPU (recommended).
- Steps: Clone repository, create virtual environment, update pip, install dependencies, verify installation, download FER2013 dataset, preprocess dataset, run model.
Models and Architectures
- Swin Transformer: Hierarchical transformer for visual tasks. Reference: Swin Transformer Paper.
- Custom CNN: Lightweight CNN for real-time emotion detection.
- Vision Transformer (ViT): Captures long-range dependencies in facial features. Reference: ViT Paper.
- Additional Models: MobileNet, EfficientNet, and hybrid architectures.
Applications
- Human Resources: Monitor and assess employee mental health.
- Healthcare: Real-time emotion detection for early interventions.
- Research: Advance AI in mental health detection.
Citation
- Published in Engineering, Technology & Applied Science Research, indexed in Scopus Q2.
Contact
- Email: mujiyanto@amikom.ac.id

LibriSpeech
LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。
OpenDataLab 收录
UIEB, U45, LSUI
本仓库提供了水下图像增强方法和数据集的实现,包括UIEB、U45和LSUI等数据集,用于支持水下图像增强的研究和开发。
github 收录
Breast Cancer Dataset
该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。
github 收录
ImageNet-1K(ILSVRC2012)
ImageNet-1K(ILSVRC2012)是一个大规模的图像分类数据集,包含1000个类别的图像,用于训练和验证图像分类模型。
github 收录
UniMed
UniMed是一个大规模、开源的多模态医学数据集,由穆罕默德·本·扎耶德人工智能大学等机构创建,包含超过530万张图像-文本对,涵盖六种不同的医学成像模态:X射线、CT、MRI、超声、病理和眼底。数据集通过利用大型语言模型(LLMs)将特定模态的分类数据集转换为图像-文本格式,并结合现有的医学图像-文本数据,实现了可扩展的视觉-语言模型(VLM)预训练。UniMed旨在解决医学领域中公开可用的大规模图像-文本数据稀缺的问题,适用于多种医学成像任务,如零样本分类和跨模态泛化。
arXiv 收录