five

Northern elephant seal UAS mass estimates|无人机摄影测量数据集|野生动物研究数据集

收藏
Mendeley Data2024-04-12 更新2024-06-27 收录
无人机摄影测量
野生动物研究
下载链接:
https://datadryad.org/stash/dataset/doi:10.7291/D15D56
下载链接
链接失效反馈
资源简介:
Unmanned aerial system (UAS) photogrammetry offers a method that is safer for both animals and researchers and is logistically simpler than traditional weighing methods (Fiori et al. 2017). Additionally, UAS photogrammetry facilitates larger sample sizes because it allows measurement at larger spatial scales, thereby increasing statistical power (Sweeney et al. 2015). However, UAS photogrammetry requires calibration and validation prior to use in order to assess the error relative to known mass measurements. Species-specific calibration of appropriate metrics (e.g., footprint area (Christiansen et al. 2016)) is necessary to account for body shape differences (e.g., “peanut head” syndrome) (Miller et al. 2012, Joblon et al. 2014). Further, the accuracies of photographs taken in overhead and oblique positions are rarely compared due to the challenge of weighing and repeatedly photographing uniquely identified individuals (Fearnbach et al. 2018). Northern elephant seals (Mirounga angustirostris) offer a unique opportunity to calibrate UAS photogrammetry to measure body mass. Elephant seals undergo dramatic changes in mass throughout the year and consistently haul-out to breed and molt at Año Nuevo Natural Reserve, California, USA (37.11° N, 122.34° W) (Le Boeuf and Laws 1994) (Figure 1). Our objectives were: 1) to evaluate the accuracy of UAS photogrammetry for estimating mass in adult female northern elephant seals and 2) to examine the effect of body position on UAS mass estimates. Our error estimates were comparable to other ground-based studies that used multiple photogrammetric measurements to estimate mass (Table 1) and slightly higher than the only other overhead drone study (Krause et al. 2017), possibly due to lower camera resolution. This error is also slightly higher than previous mass estimates derived from morphometric measurements obtained during manual procedures (2.8% for Weddell seals Leptonychotes weddellii (Shero et al. 2014) and 4% for elephant seals (Crocker pers. comm)) but results in significantly less disturbance. Errors in estimated mass were marginally better when we used dorsal footprint area (R2= 0.895) than lateral footprint area (R2= 0.822), suggesting that our UAS mass estimates are robust to changes in body position. In summary, photogrammetric measurements from a single, vertical image obtained using UAS provide a promising approach for estimating the body mass of pinnipeds and similar approaches can be used to find species-specific calibration equations. Mass measurements can inform ecosystem-based resource management (Boyd et al. 2006) by providing information about the inter-annual productivity of the ocean environment and in turn individual, population, and ecosystem-level health in marine mammals (Krause et al. 2017).
创建时间:
2023-11-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

VQA

我们提出了自由形式和开放式视觉问答 (VQA) 的任务。给定图像和关于图像的自然语言问题,任务是提供准确的自然语言答案。反映许多现实世界的场景,例如帮助视障人士,问题和答案都是开放式的。视觉问题有选择地针对图像的不同区域,包括背景细节和底层上下文。因此,与生成通用图像说明的系统相比,在 VQA 上取得成功的系统通常需要对图像和复杂推理有更详细的理解。此外,VQA 适合自动评估,因为许多开放式答案仅包含几个单词或一组封闭的答案,可以以多项选择的形式提供。我们提供了一个数据集包含 100,000 的图像和问题并讨论它提供的信息。提供了许多 VQA 基线,并与人类表现进行了比较。

OpenDataLab 收录

TM-Senti

TM-Senti是由伦敦玛丽女王大学开发的一个大规模、远距离监督的Twitter情感数据集,包含超过1.84亿条推文,覆盖了超过七年的时间跨度。该数据集基于互联网档案馆的公开推文存档,可以完全重新构建,包括推文元数据且无缺失推文。数据集内容丰富,涵盖多种语言,主要用于情感分析和文本分类等任务。创建过程中,研究团队精心筛选了表情符号和表情,确保数据集的质量和多样性。该数据集的应用领域广泛,旨在解决社交媒体情感表达的长期变化问题,特别是在表情符号和表情使用上的趋势分析。

arXiv 收录

ChemBL

ChemBL是一个化学信息学数据库,包含大量生物活性数据,涵盖了药物发现和开发过程中的各种化学实体。数据集包括化合物的结构信息、生物活性数据、靶点信息等。

www.ebi.ac.uk 收录

中国农村金融统计数据

该数据集包含了中国农村金融的统计信息,涵盖了农村金融机构的数量、贷款余额、存款余额、金融服务覆盖率等关键指标。数据按年度和地区分类,提供了详细的农村金融发展状况。

www.pbc.gov.cn 收录

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录