five

Data from: Natural and anthropogenic sounds reduce song performance: insights from two emberizid species|鸟类行为学数据集|环境声音影响数据集

收藏
DataONE2017-03-01 更新2024-06-26 收录
鸟类行为学
环境声音影响
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Anthropogenic sounds influence animal vocal behavior, species distributions, and community assemblages. Natural sounds also have the potential to affect the behavior and ecology of animals, but it is currently unknown if the effects of natural sounds match those of anthropogenic sounds. Here, we quantified and compared the effects of natural and anthropogenic sounds on avian song performance by calculating trade-off frontiers based on trill rate and bandwidth of two emberizid species. Chipping sparrows (Spizella passerina) and white-crowned sparrows (Zonotrichia luecophrys) were recorded in areas with and without anthropogenic sound and along a natural sounds gradient generated from ocean surf, respectively. We analyzed individuals’ song performance relative to the trade-off frontier and found that both species vocalizing in environments with louder background sounds sang songs that were significantly further below the trade-off frontier than songs sung by birds in quiet settings. Chipping sparrows vocalizing in noisy areas sang almost twice as far below the trade-off frontier than individuals in quiet areas, and white-crowned sparrow song performance declined by ~25% with each 3 dB(A) increase in environmental sounds, or halving the size of a signaler’s listening area. These results suggest that natural and anthropogenic sounds can have a significant effect on song performance, a trait known to influence the outcome of male-male contests and influence female mate choices. Considering that natural sounds are pervasive, quiet acoustic refuges may be far more important than previously thought, and anthropogenic development may be infringing on larger portions of prime habitat than we realize.
创建时间:
2017-03-01
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

糖尿病预测数据集

糖尿病相关的医学研究或者健康数据

AI_Studio 收录