five

Data used in the article "Land sparing and sharing patterns in forestry: exploring even-aged and uneven-aged management at the landscape scale"|林业管理数据集|LANDIS-II模型数据集

收藏
DataCite Commons2024-05-28 更新2024-08-18 收录
林业管理
LANDIS-II模型
下载链接:
https://figshare.com/articles/dataset/Data_used_in_the_article_Land_sparing_and_sharing_patterns_in_forestry_exploring_even-aged_and_uneven-aged_management_at_the_landscape_scale_/19467620
下载链接
链接失效反馈
资源简介:
The dataset contains different types of data, with different origins : Data about preliminary simulations, which serves to determine certain parameters for LANDIS-II Raster data, text files and a Python Script used to create the scenario files for each LANDIS-II simulation These files contains LANDIS-II parameters derived from previous studies, such as Boulanger et al. 2017 and Tremblay et al. 2018. The origin of each parameter is described in the supplementary material of the article. The entire set of parameter files used for every simulations used in the study, created by the Python script Script_to_create_scenario_files.py The Python scripts and Schell scripts used to launch and monitor the simulations and analysis on the supercomputer clusters of Compute Canada The resulting .csv files coming from the analysis of the output files of the simulation by the scripts Landis_output_analysis.py, Landis_output_analysis_r.R and Landis_output_analysis_additional_r.R. The Python script used to generate the figures of the article. <br> The dataset is separated into 3 sections : The first section contains the data used to calibrate certain parameters of LANDIS-II : in particular, the data necessary to calibrate the Base Fire extension in our study area, along with the calibration of the surface-biomass harvested relation in order to control the biomass harvested in each scenario (as LANDIS-II can only harvest a surface target, and not a biomass target), as well as the parameters files needed to create the folders with all of the parameters necessary for a LANDIS-II simulation. Users can find the files to launch the calibration scenario for the parameters of Base Fire, and a table file describing the process of empirical determination of those parameters via repeated calibration simulations (Empirical determination of the fire parameters.ods) Users can also find all of the summary logs of the Biomass Harvest extension from the surface-biomass calibration scenarios, along with a Python Script to transform these into a single table used to create linear model for the surface-biomass relation (Biomass harvest outputs to calibration table.py), and the corresponding table (calibration_surface_biomass.csv) Users can also find the biomass targets by UA determined via the PAFIT documents of the ministry of forests of Quebec and information about the biomass of the main tree species in the landscape (biomass_targets_by_UAs.csv) Finally, users will find the script to create the scenario folders (Script_to_create_scenario_folders.py), along with the parameter files that it uses (/Parameter files to create scenario folders), and the table describing the scenario caracteristics that is read by the script (scenarios_table.csv). Some of these files are not necessary for the simulations proper, but are necessary for the analysis of the scenario outputs. The second section contains all of the scenarios folders with all of the parameters files to launch all of the simulations made for the study. Users can upload those files on Compute Canada clusters to replicate our results if needed, using the job_script_python_robot.sh script to launch a job on the cluster. The job will use the Python_watcher_bot.py script, which will monitor if simulations are running as needed. The third section contains all of the files resulting from the simulation and of the analysis of the simulation outputs (/All csv result files), along with the files necessary to produce the figures of the article with the script Analysis and figures.py
提供机构:
figshare
创建时间:
2023-04-03
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

GAOKAO-Bench

GAOKAO-Bench是由复旦大学计算机科学与技术学院创建的数据集,涵盖了2010至2022年间中国高考的所有科目题目,共计2811题。该数据集包含1781道客观题和1030道主观题,题型多样,包括单选、填空、改错、开放性问题等。数据集通过自动化脚本和人工标注将PDF格式的题目转换为JSON文件,数学公式则转换为LATEX格式。GAOKAO-Bench旨在为大型语言模型提供一个全面且贴近实际应用的评估基准,特别是在解决中国高考相关问题上的表现。

arXiv 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录

Set5

Set5数据集是一个包含5张图像的图像超分辨率测试数据集,包括'baby', 'bird', 'butterfly', 'head', 'woman',通常用于评估图像超分辨率模型的性能。

huggingface 收录